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Abstract. Whilst diffusion probabilistic models can generate high qual-
ity image content, key limitations remain in terms of both generating
high-resolution imagery and their associated high computational require-
ments. Recent Vector-Quantized image models have overcome this limi-
tation of image resolution but are prohibitively slow and unidirectional as
they generate tokens via element-wise autoregressive sampling from the
prior. By contrast, in this paper we propose a novel discrete diffusion
probabilistic model prior which enables parallel prediction of Vector-
Quantized tokens by using an unconstrained Transformer architecture
as the backbone. During training, tokens are randomly masked in an
order-agnostic manner and the Transformer learns to predict the origi-
nal tokens. This parallelism of Vector-Quantized token prediction in turn
facilitates unconditional generation of globally consistent high-resolution
and diverse imagery at a fraction of the computational expense. In this
manner, we can generate image resolutions exceeding that of the origi-
nal training set samples whilst additionally provisioning per-image likeli-
hood estimates (in a departure from generative adversarial approaches).
Our approach achieves state-of-the-art results in terms of the manifold
overlap metrics Coverage (LSUN Bedroom: 0.83; LSUN Churches: 0.73;
FFHQ: 0.80) and Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12;
FFHQ: 1.20), and performs competitively on FID (LSUN Bedroom: 3.64;
LSUN Churches: 4.07; FFHQ: 6.11) whilst offering advantages in terms
of both computation and reduced training set requirements.

Keywords: generative model, diffusion, high-resolution image synthesis

1 Introduction

Artificially generating plausible photo-realistic images, at ever higher resolutions,
has long been a goal when designing deep generative models. Recent advance-
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Fig. 1: Our approach uses a discrete diffusion to quickly generate high quality
images optionally larger than the training data (right).

ments have benefited fields such as medical image synthesis [23], computer graph-
ics [11,91], image editing [52], image translation [77], and super-resolution [33].

These methods can be divided into five main classes [5], each making different
trade-offs to scale to high resolutions. Techniques to scale Generative Adversarial
Networks (GANs) [25] include progressive growing [42], large batches [8], and
regularisation [53, 56]. Variational Autoencoders (VAEs) [49] can be scaled by
building complex priors [12, 63, 84] and correcting samples [89]. Autoregressive
approaches can make independence assumptions [69] or partition dimensions
[55]. Normalizing Flows use multi-scale architectures [50], while diffusion models
can be scaled using SDEs [81] and cascades [33]. Each of these have their own
drawbacks, such as unstable training, slow sampling, and lack of global context.

Of particular interest to this work is the popular Transformer architecture
[86] which models long distance relationships using a powerful parallelisable
attention mechanism. By constraining the Transformer architecture to attend
a fixed unidirectional ordering of tokens, they can be used to parameterise a
generative autoregressive model [13,64]. However, image data does not conform
to such a structure and hence this bias limits the representation ability and
unnecessarily restricts the sampling process to be sequential and slow.

Addressing these issues, our main contributions are:

– We propose a parallel token prediction approach for generating Vector-
Quantized images allowing much faster sampling than autoregressive models.

– Our approach is able to generate globally consistent images at resolutions
exceeding that of the original training data by aggregating multiple context
windows, allowing for much larger context regions.

– Our approach demonstrates state-of-the art performance on three benchmark
datasets in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12;
FFHQ: 1.20) and Coverage (Bedroom: 0.83; Churches: 0.73; FFHQ: 0.80),
and is competitive on FID (Bedroom: 3.64; Churches: 4.07; FFHQ: 6.11).
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2 Prior Work

Extensive work in deep generative modelling [5] and self-supervised learning [20]
laid the foundations for this research, which we review here in terms of both
existing models (Sections 2.1-2.4) and Transformer architectures (Section 2.5).

2.1 Autoregressive Models

Autoregressive models are a family of powerful generative models capable of di-
rectly maximising the likelihood of the data on which they are trained. These
models have achieved impressive image generation results, however, their sequen-
tial nature limits them to relatively low dimensional data [14,41,62,71,76,85].

The training and inference process for autoregressive models is based on the
chain rule. By decomposing inputs into components x = {x1, ..., xn}, an autore-
gressive model with parameters θ can generate new latent samples sequentially:

pθ(x) = pθ(x1, x2, ..., xn) =
∏n

i=1
pθ(xi|x1, ..., xi−1). (1)

For many tasks, appropriate input orderings are not obvious; since the receptive
field is limited to previous tokens, this can significantly affect sample quality.

2.2 Vector-Quantized Image Models

To scale autoregressive models to high-resolution data, Vector-Quantized image
models can be used. These learn a highly compressed discrete representation
taking advantage of an information rich codebook [63]. A convolutional encoder
downsamples images x to a smaller spatial resolution, E(x) = {e1, e2, ..., eL} ∈
RL×D. A simple quantisation approach is to use the argmax operation which
maps continuous encodings to their closest elements in a finite codebook of
vectors [63]. Specifically, for a codebook C ∈ RK×D, where K is the number of
discrete codes in the codebook and D is the dimension of each code, each ei is
mapped via a nearest-neighbour lookup onto a discrete codebook value, cj ∈ C:

zq = {q1, q2, ..., qL} , where qi = min
cj∈C

∥ei − cj∥. (2)

As this operation is non-differentiable, the straight-through gradient estimator
[3] is used to approximate gradients resulting in bias. The quantized latents are
fed through a decoder x̂ = G(zq) to reconstruct the input based on a perceptual
reconstruction loss [22,92]; this process is trained by minimising the loss LVQ,

LVQ = Lrec +∥sg[E(x)]− zq∥22 + β∥sg[zq]− E(x)∥22. (3)

2.3 Discrete Energy-Based Models

Since the causal nature of autoregressive models limits their representation abil-
ity, other approaches with less constrained architectures have begun to outper-
form them even on likelihood [48]. Energy-based models (EBMs) are an enticing
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method for representing discrete data as they permit unconstrained architectures
with global context. Implicit EBMs define an unnormalised distribution over
data that is typically learned through contrastive divergence [19, 31]. Unfortu-
nately, sampling EBMs using Gibbs sampling is impractical for high dimensional
discrete data. However, incorporating gradients can reduce mixing times [27].

Similar to autoregressive models, masked language models (MLMs) such as
BERT [15] model the conditional probability of the data. However, these are
trained bidirectionally by randomly masking a subset of tokens from the input
sequence, allowing a much richer context than autoregressive approaches. Some
attempts have been made to define an implicit energy function using the condi-
tional probabilities [87], however, obtaining true samples leads to very long sam-
ple times and we found them to be ineffective at modelling longer sequences [26].

2.4 Discrete Denoising Diffusion Models

Diffusion models [32, 80] define a Markov chain q(x1:T |x0) =
∏T

t=1 q(xt|xt−1)
that gradually destroys data x0 by adding noise over a fixed number of steps T
so that xT contains little to no information about x0 and can be easily sampled.
The reverse procedure is a generative model that gradually denoises towards the
data distribution pθ(x0:T ) = pθ(xT )

∏T
t=1 pθ(xt−1|xt), learned by optimising the

variational upper bound on negative log-likelihood, with tth term

Eq(xt+1|x0)

[
DKL(q(xt|xt+1,x0) ∥ pθ(xt|xt+1))

]
, (4)

where sampling from the reverse process is not required during training. In con-
tinuous spaces, distributions are typically parameterised as Normal distributions.

Discrete diffusion models [1, 36, 80] constrain the state space so that xt

is a discrete random variable falling into one of K categories. As such, the
forward process can be represented as categorical distributions q(xt|xt−1) =
Cat(xt;p = xt−1Qt) for one-hot xt−1 where Qt is a matrix denoting the
probabilities of moving to each successive state. q(xt|x0) can be expressed as
q(xt|x0) = Cat(xt;p = Qt) where Qt = x0Q1Q2 · · ·Qt, therefore scaling is
simple if Qt can be expressed in closed form. Transition processes include mov-
ing states with some low uniform probability [36], moving to nearby states with
some probability based on similarity or distance, and of particular interest to
this work, masking inputs similar to generative MLMs.

2.5 Transformers

Transformers [86] have made a huge impact across many fields [30] due to their
power and flexibility. They are based on self-attention, a function which allows
interactions with strong gradients between all inputs, irrespective of their spatial
relationships. This procedure (Eqn. 5) encodes inputs as key-value pairs, where
values V represent embedded inputs and keys K act as an indexing method,
subsequently, a set of queries Q are used to select which values to observe:

Attn(Q,K,V ) = softmax

(
QKT

√
dk

)
V . (5)
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Fig. 2: Our approach uses a discrete absorbing diffusion model to represent
Vector-Quantized images allowing fast high-resolution image generation. Specif-
ically, after compressing images to an information-rich discrete space, elements
are randomly masked and an unconstrained Transformer is trained to denoise
the data, using global context to ensure samples are consistent and high quality.

While this allows long distance dependencies to be learned, complexity increases
with sequence length quadratically, making scaling difficult. Approaches to miti-
gate this include independence assumptions [69], sparsity [13], and low rank [46].

3 Method

Modelling Vector-Quantized image representations with autoregressive models
has a number of downsides, namely the slow sequential nature of sampling and
the requirement to choose an input ordering which ignores the 2D structure
of images thereby restricting modelling ability. To address these problems, we
propose using a discrete diffusion model to represent Vector-Quantized image
representations; this is visualised in Fig. 2. We hypothesise that by removing
the autoregressive constraint, allowing bidirectional context when generating
samples, not only will it be possible to speed up sampling, but an improved
feature representation will be learned, enabling higher quality image generation.

3.1 Sampling Globally Coherent Latents

Once the training data is encoded as discrete, integer-valued latents z ∈ ZD, a
discrete diffusion model can be used to learn the distribution over this highly
compressed space. Specifically, we use the absorbing state diffusion [1] where
in each forward time step t, each discrete latent at coordinate i, [z]i, is inde-
pendently either kept the same or masked out entirely with probability 1

t ; the
reverse process gradually unveils these masks. In this formulation, the transition
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matrix is defined as Qt = (1− βt)I + βt1e
T
m where em is a vector with a one on

mask states m and zeros elsewhere, and the beta schedule is βt =
1

T−t+1 . Rather
than directly approximating pθ(zt−1|zt), training stochasticity is reduced by
predicting pθ(z0|zt) [32]. In this case, the variational bound reduces to

Eq(z0)

[
T∑

t=1

1

t
Eq(zt|z0)

[ ∑
[zt]i=m

log pθ([z0]i|zt)
]]

. (6)

With pθ modelled using multinomial distributions, a temperature τ < 1 can be
applied to the logits to improve sample quality at the expense of diversity.

Unlike, uniform diffusion, absorbing diffusion is an effective strategy for
Vector-Quantized image modelling as noisy elements are removed entirely rather
than being changed to a different value which in the discrete case may be unre-
lated but are much less easy to identify. Gaussian and token distance transitions
which change states based on embedding distances are similarly ineffective as
Vector-Quantized latents are not ordinal meaning that state changes can signif-
icantly change tokens’ semantics. This effectiveness is further evidenced by the
success of BERT [15] which similarly learns to denoise randomly masked data.

Architecture Esser et al. [22] demonstrated that in the autoregressive case,
Transformers [86] are better suited for modelling Vector-Quantized images than
convolutional approaches due to the importance of long-distance relationships
in this compressed form. As such, we use transformers to model the prior, but
without the architectural restrictions imposed by autoregressive approaches.

Fast Sampling Because the diffusion model is trained to predict p(z0|zt), it
is possible to sample skipping an arbitrary number of time steps k, pθ(zt−k|zt),
allowing sampling in significantly fewer steps than autoregressive approaches.

3.2 Addressing Gradient Variance

When inputs are very noisy (at time steps close to T ), denoising is difficult and
the stochastic training results in gradients with high variance. As such, in prac-
tice continuous diffusion models are trained to estimate the noise rather than
directly predict the denoised data, significantly reducing the variance. Unfor-
tunately, no relevant reparameterisation currently exists for discrete distribu-
tions [36]. Instead, we address this problem by reweighting the ELBO based on
the information available at time t, T−t+1

T [1], so that components of the loss at
time steps closer to T are weighted less than earlier steps. This effectively alters
the learning rate based on gradient variance, improving convergence,

Eq(z0)

[∑T

t=1

T − t+ 1

T
Eq(zt|z0)

[∑
[zt]i=m

log pθ([z0]i|zt)
]]
. (7)

This is equivalent to the loss obtained by assuming the posterior does not have
access to zt, i.e. if the t−1th loss term is DKL(q(zt−1|z0) ∥ pθ(zt−1|zt)) (proof in
Appendix B). Since we predict z0 this assumption does not harm the training.
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3.3 Generating High-Resolution Images

Using convolutions to build Vector-Quantized image models encourages latents
to be highly spatially correlated with generated images. It is therefore possible
to construct essentially arbitrarily sized images by generating latents with the
required shape. We propose an approach that allows globally consistent images
substantially larger than those in the training data to be generated.

First, a large a by b array of mask tokens, z̄T = ma×b, is initialised that
corresponds to the size of image we wish to generate. In order to capture the
maximum context when approximating z̄0 we apply the denoising network to
all subsets of z̄t with the same spatial size as the usual inputs of the network,
aggregating estimates at each location. Specifically, using cj(z̄t) to represent
local subsets, we approximate the denoising distribution as a mixture,

p([z̄0]i|z̄t) ≈
1

Z

∑
j

p([z̄0]i|cj(z̄t)), (8)

where the sum is over subsets cj that contain the ith latent and Z is the normal-
ising constant. For extremely large images, this can require a very large number
of function evaluations, however, the sum can be approximated by striding over
latents with a step > 1 or by randomly selecting positions.

3.4 Improving Code Representations

There are various options to obtain high-quality image representations including
using large numbers of latents and codes [67] or building a hierarchy of latent
variables [68]. We use the adversarial framework proposed by Esser et al. [22]
to achieve higher compression rates with high-quality codes using only a single
GPU, without tying our approach to the characteristics typically associated with
generative adversarial models. Additionally, we apply differentiable augmenta-
tions T , such as translations and colour jitter, to all discriminator inputs; this
has proven to be effective at improving sample quality across methods [41, 93].
The overall loss L is a linear combination of LVQ, the Vector-Quantized loss, and
LG which uses a discriminator D to assess realism based on an adaptive weight
λ. On some datasets, λ can grow to extremely large values hindering training.
We find simply clamping λ at a maximum value λmax = 1 an effective solution
that stabilises training,

L= min
E,G,C

max
D

Epd

[
LVQ +λLG

]
, (9a) λ=min

(
∇GL

[Lrec]

∇GL
[LG] + δ

, λmax

)
, (9b)

LG = logD(T (x)) + log(1−D(T (x̂))). (9c)

The argmax quantisation approach can result in codebook collapse, where some
codes are never used; while other quantisation methods can reduce this [17, 40,
54,67], we found argmax to yield the highest reconstruction quality.
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Fig. 3: Samples from our models trained on 256x256 datasets: LSUN Churches,
FFHQ, and LSUN Bedroom.

4 Evaluation

We evaluate our approach on three high-resolution 256x256 datasets: LSUN
Bedroom, LSUN Churches [90], and FFHQ [44]. Sec. 4.1 evaluates the qual-
ity of samples from our proposed model. Sec. 4.2 demonstrates the representa-
tion abilities of absorbing diffusion models applied to the learned discrete latent
spaces, including how sampling can be sped up, improvements over equivalent
autoregressive models, and the effect of our reweighted ELBO. Finally, Sec. 4.3
evaluates our Vector-Quantized image model.

In all experiments, our absorbing diffusion model parameterised with an 80M
parameter Transformer Encoder [86] is applied to 16× 16 latents discretised to
a codebook with 1024 entries and optimised using the Adam optimiser [47].
While, as noted by Esser et al. [22], a GPT2-medium [66] architecture (307M
parameters) fits onto a GPU with 12GB of VRAM, in practice this requires small
batch sizes and learning rates making training in reasonable times impractical.
More details can be found in Appendix A. Source code is available here.

4.1 Sample Quality

In this section we evaluate our model quantitatively and qualitatively. In contrast
to other multi-step methods, our approach allows sampling in the fewest steps.
Samples can be found in Figs. 3 and 5 which are high quality and diverse.

Limitations of the FID Metric FID is a popular choice for evaluating sample
quality, it has been found to correlate well with image quality and is efficient to
calculate. However, it unrealistically approximates the data distribution as Gaus-
sian in embedding space and is insensitive to the global structure of the data
distribution [83]. For likelihood models, calculating NLL is possible instead; by
fine tuning our approach to model pixels as Gaussians, likelihood can be es-
timated as p(x) ≥ p(x|z)p(z) [63], giving 2.72BPD on 5-bit FFHQ. However,
likelihood does not correlate well with quality [82]. Other approaches that ad-
dress these issues [6] include PPL [44], which assesses sample consistency through

https://github.com/samb-t/unleashing-transformers
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LSUN Churches LSUN Bedroom FFHQ
Model P ↑ R ↑ D ↑ C ↑ P ↑ R ↑ D ↑ C ↑ P ↑ R ↑ D ↑ C ↑

DCT [58] 0.60 0.48 - - 0.44 0.56 - - 0.51 0.40 - -
TT [22] 0.67 0.29 1.08 0.60 0.61 0.33 1.15 0.75 0.64 0.29 0.89 0.5
VDVAE [12] - - - - - - - - 0.59 0.20 0.80 0.50
PGGAN [42] 0.61 0.38 0.83 0.63 0.43 0.40 0.70 0.64 - - - -
StyleGAN [44] - - - - 0.55 0.48 0.96 0.80 - - - -
StyleGAN2 [45] 0.60 0.43 0.83 0.68 - - - - 0.69 0.40 1.12 0.80
ProjGAN [78] 0.56 0.53 0.65 0.64 0.55 0.46 0.90 0.79 0.66 0.46 0.98 0.77
Ours (τ = 1.0) 0.70 0.42 1.12 0.73 0.64 0.38 1.27 0.81 0.69 0.48 1.06 0.77
Ours (τ = 0.9) 0.71 0.45 1.07 0.74 0.67 0.38 1.51 0.83 0.73 0.48 1.20 0.80

Table 1: Precision (P), Recall (R), Density (D), and Coverage (C) [51,57,75] for
approaches trained on LSUN Churches, LSUN Bedroom, and FFHQ.

latent interpolations; IMD [83], which uses all moments making it sensitive to
global structure; and MTD [2], which compares image manifolds.

PRDC In this work, we evaluate using Precision (P) and Recall (R) [75] ap-
proaches (Tab. 1) which, unlike FID, evaluate sample quality and diversity sep-
arately by quantifying the overlap between the data and sample distributions,
and have been used in similar recent work assessing high-resolution image gen-
eration [38, 45, 58, 68]. Precision is the expected likelihood of fake samples lying
on the data manifold and recall vice versa. These metrics are computed by ap-
proximating the data and sample manifolds as hyper-spheres around data and
sample points respectively; manifold m(X1, . . . , XN ) =

⋃N
i=1 B(Xi,NNDk(Xi)),

where B(x, r) is a hypersphere around x with radius r and NNDk is kth nearest
neighbour distance [51]. While modelling manifolds as hyperspheres is a flawed
assumption, it is beneficial to evaluate on multiple metrics to obtain a more accu-
rate representation of performance. We also calculate Density (D) and Coverage
(C) which are modifications to Precision and Recall respectively that address
manifold overestimation [57]. Formally, these metrics can be defined as,

P=
1

M

M∑
j=1

1Yj∈m(X1,...,XN ), (10a) D=
1

kM

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDk(Xi)), (10b)

R =
1

N

N∑
i=1

1Xi∈m(Y1,...,YM ), (10c) C =
1

N

N∑
i=1

1∃js.tYj∈B(Xi,NNDk(Xi)). (10d)

Due to limited computing resources, we are unable to provide Density and Cov-
erage scores for DCT [58] and PRDC scores for StyleGAN2 on LSUN Bedroom
since training on a standard GPU would take more than 30 days, much more than
the 10 days to train our models. On LSUN our approach achieves the highest
Precision, Density, and Coverage; indicating that the data and sample manifolds
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Fig. 4: Our method allows unconditional images larger than those seen during
training to be generated by applying the denoising network to all subsets of the
image, aggregating probabilities to encourage global continuity.

have the most overlap. On FFHQ our approach achieves the highest Precision
and Recall. When sampling with lower temperatures to improve FID, generative
models generally trade precision and recall [45, 68]; since we also calculate FID
with τ =0.9, we evaluate the effect on PRDC. In almost all cases this improves
scores, indicating that more samples in data regions, increasing overlap.

Method Params Bed Church FFHQ

DDPM [32] 114M 6.36 7.89 -
DCT [58] 448M 6.40 7.56 -
VDVAE [12] 115M - - 28.5
TT [21,22] 600M 6.35 7.81 9.6
I-BART [21] 2.1B 5.51 7.32 9.57
PGGAN [42] 47M 8.34 6.42 -
SGAN2 [45] 60M 2.35 3.86 3.8
ADM [16] 552M 1.90 - -
ProjGAN [78] 106M 1.52 1.59 3.39
Ours (τ=1.0) 145M 5.07 5.58 7.12
Ours (τ=0.9) 145M 3.27 4.07 6.11

Table 2: FID comparison on FFHQ, LSUN
Bedroom and Churches (lower is better).

FID In Tab. 2 we calculate the
Fréchet Inception Distance (FID)
of samples from our models using
torch-fidelity [61]. Using a fraction
of the parameters of other Vector-
Quantized image models, our ap-
proach achieves much lower FID.

Higher Resolution Fig. 4 shows
samples generated at higher reso-
lutions (up to 768×256) than the
observed training data using the
method described in Sec. 3.3 with
τ = 0.8. Even at larger scales we
observe high-quality, diverse, and
consistent samples.

4.2 Absorbing Diffusion

In this section we analyse the usage of absorbing diffusion for high-resolution
image generation, determining how many sampling steps are required to obtain
high-quality samples and ablating the components of our approach.

Sampling Speed Our approach applies a diffusion process to a highly com-
pressed image representation, meaning it is already 18× faster to sample from
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(a) Non-cherry picked, τ = 0.9, 256×256 LSUN Churches samples.

(b) Non-cherry picked, τ = 0.85, 256×256 FFHQ samples.

(c) Non-cherry picked, τ = 0.9, 256×256 LSUN Bedroom samples.

Fig. 5: Samples from our approach are diverse and high quality.

than DDPM (ours: 3.8s, DDPM: 70s per image on a NVIDIA RTX 2080 Ti).
However, since the absorbing diffusion model is trained to approximate p(z0|zt)
it is possible to speed the sampling process up further by skipping arbitrary num-
bers of time steps, unmasking multiple latents at once. In Tab. 3 we explore how
sample quality is affected using a simple step skipping scheme: evenly skipping
a constant number of steps so that the total number of steps meets some fixed
computational budget. As expected, FID increases with fewer sampling steps.
However, the increase in FID is minor relative to the improvement in sampling
speed: our approach achieves similar FID to the equivalent autoregressive model
using half the number of steps. With 50 sampling steps, our approach is 88×
faster than DDPMs. Using a more sophisticated step selection scheme such as
dynamic programming [88], FID could potentially be reduced further.

Autoregressive vs Absorbing DDPM Tab. 4 compares the representation
ability of our absorbing diffusion model with an autoregressive model, both util-
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Steps 50 100 150 200 256

Church 6.86 6.09 5.81 5.68 5.58
Church (τ=0.9) 4.90 4.40 4.22 4.19 4.07
FFHQ 9.60 7.90 7.53 7.52 7.12
FFHQ (τ=0.9) 6.87 6.24 6.16 6.14 6.11

Table 3: Our approach allows sampling
in much fewer steps with only minor
FID increase.

Method
Churches FFHQ

FID ↓ NLL ↓ FID ↓ NLL ↓

*AR 13.23 6.67 9.47 6.65
*Absorbing 11.84 6.41 8.52 6.48
AR 5.93 6.24 8.15 6.18
Absorbing 5.58 6.01 7.12 5.96

Table 4: FID and validation latent
NLL (in bpd) using the same Trans-
former. *=Default VQGAN
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(b) FFHQ

Fig. 6: Models trained with reweighting con-
verge faster than models trained on ELBO.

Modifications Churches FFHQ

Default 5.25 3.37
λmax = 1 8.67 4.72
DiffAug 5.16 6.57
Both 2.70 3.12

Table 5: Effect of proposed
VQGAN changes on FID.

ising exactly the same Transformer architecture, but with the Transformer un-
constrained in the diffusion case. On both datasets diffusion achieves lower FID,
which is calculated in the image space. Validation NLL is evaluated in latent
space (i.e. − log p(z)) and again the diffusion model outperforms the autore-
gressive model despite being trained on a harder task with the same number of
parameters, indicating that the diffusion models better approximate the prior
distribution. Following previous works, early stopping was used to prevent au-
toregressive models from overfitting [21,41]; increasing weight decay and dropout
in some cases slightly improved validation NLL but caused FID to increase.

Reweighted ELBO In Sec. 3.2 we proposed using a reweighted ELBO when
training the diffusion model to reduce gradient variance. We evaluate this in
Fig. 6 by comparing validation ELBO (calculated with Eq. 6) during train-
ing for models trained directly on ELBO and our reweighting. The models
trained on reweighted ELBO converge substantially faster, demonstrating that
our reweighting is valid and simplifies optimisation.

4.3 Reconstruction Quality

In Tab. 5 we evaluate the effect of DiffAug [93] and λ limiting on Vector-
Quantized image models. While each technique individually can lead to worse
FID due to imbalance between the generator and discriminator, we found com-
bining techniques offered the most stability and improved FID across all datasets.
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Temperature

(a) Impact of sampling temperature
on diversity. For small temperature
changes it is unclear how bias changes.

Masked Outputs

(b) Our bidirectional approach allows
local image editing by targeting regions
to be changed (highlighted in grey).

Fig. 7: Evaluation of practical use cases of our proposed generative model.

4.4 Sample Diversity

To improve sample quality, many generative models are sampled using a reduced
temperature or by truncating distributions. This is problematic, as these meth-
ods amplify any biases in the dataset. We visualise the impact of temperature on
sampling from a model trained on FFHQ in Fig. 7a. For very low temperatures
the bias the obvious: samples are mostly front-facing white men with brown hair
on solid white/black backgrounds. Exactly how the bias changes for more subtle
temperature changes is less clear, which is problematic. Practitioners should be
aware of this effect and it emphasises the importance of dataset balancing.

4.5 Image Editing

An additional advantage of using a bidirectional diffusion model to model the
latent space is that image inpainting is possible. Since autoregressive models
are conditioned only on the upper left region of the image, they are unable to
edit internal masked image regions in a consistent manner. Diffusion models, on
the other hand, allow masked regions to be placed at arbitrary locations. After a
region has been highlighted, we mask corresponding latents, identify the starting
time step by counting the number of masked latents, then continue the denoising
process from that point. Examples of this process can be found in Fig. 7b.

4.6 Limitations

In our experiments we only tested our approach on 256×256 datasets; directly
scaling to higher resolutions would require more GPU resources. However, future
work using more efficient Transformer architectures [39] may alleviate this. Our
method outperforms all approaches tested on FID except StyleGAN2 [45]; we
find that the primary bottleneck is the Vector-Quantized image model, therefore
more research is necessary to improve these discrete representations. Whilst our
approach is trained for significantly less time than other approaches such as
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StyleGAN2, the stochastic training procedure means that more training steps
are required compared to autoregressive approaches. Although when generating
extra-large images the large context window made possible by the diffusion model
encourages consistency, a reduced temperature is required, reducing diversity.

5 Discussion

While other classes of discrete generative model exist, they are less suitable for
Vector-Quantized image modelling than discrete diffusion models: VAEs intro-
duce prior assumptions about the latent space that can be limiting, in particular,
continuous spaces may not be appropriate when modelling discrete data [7]; GAN
training requires sampling from the generator meaning that gradients must be
backpropagated through a discretistion procedure [60]; discrete normalising flows
require functions to be invertible, significantly restricting function space [4, 37].

Another approach for modelling latent spaces using diffusion models is LS-
GMs [84], which model continuous latents with SDEs. However, our approach
trains more than 15× faster thanks to the efficiency discrete approaches allow.
There also exists a variety of different discrete diffusion methods [1, 35, 79]: Im-
ageBART [21], developed concurrently with this work, models discrete latents
using multinomial diffusion with separate autoregressive Transformers per diffu-
sion step leading to slower training, inference, and substantially more parame-
ters than our method. Other concurrent works [10,29,70] which apply diffusion
processes to VQGANs are discussed in Appendix D. Also of interest are non-
autoregressive discrete methods for translation [24,28,72] and alignment [9,73].

There are a number of avenues that would make for interesting future work
based upon the models proposed in this paper: methods that scale diffusion
models such as momentum [18], noise schedules [59], cascaded models [34,74] and
classifier guidance [16] may yield improved performance. Or, to improve discrete
image representations, networks invariant to translation and rotation [43] or
other more powerful generative models could be used. Finally, by conditioning on
both text and discrete image representations, absorbing diffusion models could
allow text-to-image generation and image captioning to be accomplished using
a single model with faster run-time than independent approaches [65,67].

6 Conclusion

In this work we proposed a discrete diffusion probabilistic model prior capable of
predicting Vector-Quantized image representations in parallel, overcoming the
high sampling times, unidirectional nature and overfitting challenges associated
with autoregressive priors. Our approach makes no assumptions about the inher-
ent ordering of latents by utilising an unconstrained Transformer architecture.
Experimental results demonstrate the ability of our approach to generate di-
verse, high-quality images, optionally at resolutions exceeding the training sam-
ples. Additional work is needed to reduce training times and to efficiently scale
our approach to even higher resolutions.
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Supplementary Material

The supplementary material for this work is divided into the following sections:
Appendix A describes the architectures and hyperparameters for the experiments
presented in the main paper; Appendix B illustrates the connection between our
proposed ELBO reweighting and the true ELBO; Appendix C contains extra
FID comparisons; Appendix D compares our approach with concurrent works;
Appendix E gives nearest neighbour examples to demonstrate generalisation;
and finally, Appendix F contains additional samples at resolutions higher than
the training data.

A Implementation Details

We perform all experiments on a single NVIDIA RTX 2080 Ti with 11GB of
VRAM using automatic mixed precision when possible. As mentioned in the
main paper, we use the same VQGAN architecture as used by Esser et al. [22]
which for 256 × 256 images downsamples to features of size 16 × 16 × 256, and
quantizes using a codebook with 1024 entries. Attention layers are applied within
both the encoder and decoder on the lowest resolutions to aggregate context
across the entire image. Models are optimised using the Adam optimiser [47]
using a batch size of 4 and learning rate of 1.8 × 10−5. For the differentiable
augmentations we randomly change the brightness, saturation, and contrast,
as well as randomly translate images. The datasets we use are both publically
accessible, with FFHQ availble under the Creative Commons BY 4.0 licence.
LSUN models are trained for 2.2M steps and the FFHQ model for 1.4M steps.

For the absorbing diffusion model we use a scaled down 80M parameter ver-
sion of GPT-2 [66] consisting of 24 layers, where each attention layer has 8 heads,
each 64D. The same architecture is used for experiments with the autoregressive
model. Autoregressive models’ training are stopped based on the best validation
loss. We also stop training the absorbing diffusion models based on validation
ELBO, however, on the LSUN datasets we found that it always improved or re-
mained consistent throughout training so each model was trained for 2M steps.

Codebook Collapse One issue with vector quantized methods is codebook
collapse, where some codes fall out of use which limits the potential expressivity
of the model. We found this to occur across all datasets with often a fraction
of the codes in use. We experimented with different quantization schemes such
as gumbel softmax, different initalisation schemes such as k-means, and ‘code
recycling’, where codes out of use are reset to an in use code. In all of these
cases, we found the reconstruction quality to be comparable or worse so stuck
with the argmax quantisation scheme used by Esser et al. [22].

Precision, Recall, Density, and Coverage To compute these measures we
use the official code releases and pretrained weights in all cases except Taming
Transformers on the LSUN datasets where weights were not available; in this case
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we reproduced results as close as possible with the hardware available, training
the VQGANs and autoregressive models with the same hyperparameters used
for the rest of our experiments. Following Nash et al. [58] we use the standard
2048D InceptionV3 features, which are also used to compute FID, k = 3 nearest
neighbours, and 50k samples, and use the code provided by Naeem et al. [57].

B Reweighted ELBO

In Sec. 3.2 we propose re-weighting the ELBO of the absorbing diffusion model
so that the individual loss at each time step is multiplied by T−t+1

T rather than
1/t. In this section we justify the correctness of this re-weighting by showing
it is equivalent to minimising the difference to a forward process that does not
have access to xt. As such, the loss takes into account the difficulty of denoising
steps and re-weights them down accordingly. This derivation is based on the true
ELBO derived by [1]. The loss at time step t can be written as

Lt = DKL(q(xt−1|x0) ∥ p(xt−1|xt))

=
∑
i

∑
j

q([xt−1]i,j |x0) log
q([xt−1]i,j |x0)

p([xt−1]i,j |xt)
,

(11)

where the first summation sums over latent coordinates i, and the second sum-
mation sums over the probabilities of each code j. For the absorbing diffusion
case where tokens in xt are masked independently and uniformly with probabil-
ity t

T , this posterior is defined as

q([xt−1]i = a|x0) =


1− t−1

T , if a = [x0]i and [xt]i = m.
t−1
T , if a = m and [xt]i = m.

1, if a = [x0]i and [xt]i = [x0]i.

0, otherwise.

(12)

The reverse process remains defined in the same way as the standard reverse
process:

p([xt−1]i = a|xt) =


1
t pθ([x0]i|xt), if a = [x0]i and [xt]i = m.

1− 1
t , if a = m and [xt]i = m.

1, if a = [x0]i and [xt]i = [x0]i.

(13)

Substituting these definitions into Eq. (11), the loss can be simplified to Eq. (14);
by extracting the constants into a single term out of the sum, C, the loss can
be further simplified to obtain Eq. (15), which is equivalent to our proposed
reweighted ELBO Eq. (11),

Lt =
∑
i

[
1 log

1

1
+

t− 1

T
log

t−1
T

1− 1
t

+

(
1− t− 1

T
log

1− t−1
T

1
t pθ([x0]i|xt)

)]
, (14)

= C −
∑
i

[
T − t+ 1

T
log pθ([x0]i|xt)

]
. (15)
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C Additional Comparisons

In Fig. 6 we demonstrated that models trained using our proposed ELBO reweight-
ing converge faster in terms of validation ELBO. To further substantiate this and
show that improvements extend to sample quality we compare models trained
directly on ELBO and our reweighting in terms of FID in Fig. 8. The same trend
is observed, with the models trained on the reweighting converging faster.

Since a key property of DDPMs is that sampling times can be reduced by
skipping time steps, in Fig. 9 we compare FID scores for various numbers of
sampling steps with a continuous DDPM applied in pixel space [59]. We find
that our approach using a discrete DDPM and Vector-Quantized image model
degrades in performance at a slower rate than the continuous DDPM likely due to
the reduced dimensionality, allowing sampling with fewer steps while maintaining
quality. In both cases, the performance for very low numbers of sampling steps
could potentially be improved with more sophisticated step selection schemes.
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Fig. 8: Models trained with our reweighted ELBO
converge faster than models trained directly on
ELBO.
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Fig. 9: FID vs number of
sampling steps on LSUN
Bedroom.

D Concurrent Works

Concurrent with our work, a number of similar approaches independently pro-
posed using diffusion-like models to model VQGAN latents, these approaches are
complementary to ours and distinct in a number of ways. VQ-Diffusion [29] use
a combination of multinomial and absorbing diffusion to encourage the model
to focus less on mask tokens. This, however, requires the use of an additional
auxilliary objective function to improve stability, and in practice our approach
achieves lower FID on the only shared dataset, FFHQ. MaskGIT [10] models
discrete latents by learning to unmask tokens using a similar training scheme
to ours; during sampling, tokens are unmasked based on the model’s confi-
dence. This approach allows sampling in very few steps, but the lack of the-
oretical justification makes it unclear how representative samples are. Latent
Diffusion [70] relaxes the discrete assumption, using continuous diffusion param-
eterised by a convolutional U-Net to model latents of greater spatial size, but
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with lower dimensional codes. Both compressing spatially/depth-wise and dis-
crete/continuous diffusion come with different trade-offs such as sampling time.

E Nearest Neighbours

When training generative models, being able to detect overfitting is key to ensure
the data distribution is well modelled. Overfitting is not detected by popular
metrics such as FID, making overfitting difficult to identify in approaches such as
GANs. With our approach we are able to approximate the ELBO on a validation
set making it simple to prevent overfitting. In this section we demonstrate that
our approach is not overfit by providing nearest neighbour images from the
training dataset to samples from our model, measured using LPIPS [92].

F Additional Samples

Fig. 13 contains unconditional samples with resolutions larger than observed in
the training data from a model trained on LSUN Bedroom.

Fig. 10: Nearest neighbours for a model trained on LSUN Churches based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).
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Fig. 11: Nearest neighbours for a model trained on FFHQ based on LPIPS dis-
tance. The left column contains samples from our model and the right column
contains the nearest neighbours in the training set (increasing in distance from
left to right).

Fig. 12: Nearest neighbours for a model trained on LSUN Bedroom based on
LPIPS distance. The left column contains samples from our model and the right
column contains the nearest neighbours in the training set (increasing in distance
from left to right).
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Fig. 13: Unconditional samples from a model trained on LSUN Bedroom larger
than images in the training dataset.
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