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1. Introduction

In this document, we provide additional information that
could not be placed within the main paper due to space re-
strictions. We kindly invite the readers to watch the video
submitted as part of the supplementary material along with
this document.

2. Hole Prediction Network

As mentioned in the main manuscript, when the model
is being trained to perform depth completion, the input
must be a four-channel RGB-D image, in which the depth
channel contains holes that would naturally occur when
sensed through imperfect capture technologies. However,
the dataset used for training our model [11] consists of
pixel-prefect depth images without any holes.

This synthetic dataset [11] does contain stereo image
pairs, so a simple solution would be to calculate the dis-
parity and subsequently the depth using a well-established
stereo matching approach such as Semi-Global Matching
[6] and use the resulting depth image (which will contain
holes) as the input.

However, each image in a stereo pair in [11] (left and
right) comes with its own corresponding (left and right)
depth image, and half of the dataset (aligned RGB and depth
images) will be rendered useless if stereo matching is used
to calculate depth images with hole.

As a result, we opt for training an entirely separate model
that would be responsible for creating holes in the depth im-
ages. Even though the details regarding the training or use
of this network have no bearing on the approach proposed
in the main manuscript, we will attempt to cover the inner
workings and experimental evaluation of our hole predic-
tion model here.

This hole prediction model is a fully convolutional
encoder-decoder network inspired by [10] with skip con-
nections between all corresponding layers in the encoder

and the decoder. The last decoder layer is connected to a
soft-max classifier. Each convolutional layer is followed by
batch normalization [8] and a ReLU. The network architec-
ture can be seen in Figure 1.

The training data for this hole prediction network is
made up of 30, 000 pairs of stereo images from [4]. Dis-
parity is calculated using Semi-Global Matching (SGM) [6]
and a hole mask (M ) is subsequently generated which in-
dicates which pixels are holes. Although SGM is used
here, this is interchangeable with any other passive or ac-
tive depth capture approach. The left RGB images are thus
used as inputs with the generated masks as ground truth la-
bels. Binary cross-entropy is used as the loss function since
the segmentation task involves only two classes: hole and
non-hole.

Qualitative analyses reveal that holes are predicted
where expected. From Figure 2, we see that in regions
where camera overlap is absent or featureless surfaces,
sparse shrubbery, unclear object boundaries, and very dis-
tant objects are present, such pixels are correctly classified
as holes.

3. Additional Experiments

Following the conventions of the expansive literature on
monocular depth estimation, we measure the performance
of our approach against the KITTI dataset [4]. However,
we have re-trained and tested all the comparators using the
synthetic dataset of [11] but for brevity and due to our supe-
rior performance on the unseen KITTI dataset, against com-
parators actually trained on KITTI, we have not included
these extra results in the main manuscript. Table 1 of this
document presents the comparison of our approach against
[5, 13] trained on the synthetic dataset of [11] under the ex-
act same conditions as outlined in Section 3.4 of the main
manuscript. Our approach outperforms the comparators by
a large margin (Table 1).

https://vimeo.com/325161805


Method Error Accuracy

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.253

[13] 0.401 1.601 6.598 0.363 0.788
[5] 0.334 1.556 6.304 0.302 0.852

Ours (full) 0.208 1.402 6.026 0.269 0.926

Table 1: Comparisons using synthetic data [11].

4. Figures
Due to the space restrictions, some of the figures within

the main paper may be too small for appropriate viewing.
While some of the results are better seen in the accompany-
ing video, we also provide enlarged versions of some of the
figures here. Please see Figures 3, 4, 5, 6, 7 and 8 in this
document.
Video URL: https://vimeo.com/325161805
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Figure 1: Overview of the architecture of the hole prediction network.

Figure 2: Examples of results of the hole prediction model applied to unseen images from [4].

Figure 3: An outline of the training procedure of the main proposed approach.



Figure 4: An overview of the generator architecture.

Figure 5: Comparing the results of our model (with monocular depth estimation) when different components of the approach
are removed.



Figure 6: Comparing the results of the approach on the synthetic test set when the model is trained with and without temporal
consistency. RGB: input colour image; GTD: Ground Truth Depth; GTS: Ground Truth Segmentation; TS: Temporal
Segmentation; TD: Temporal Depth; NS: Non-Temporal Segmentation; ND: Non-Temporal Depth.

Figure 7: Results of our approach on CamVid [2] (left) and Cityscapes [3] (right) datasets. RGB: input colour image; GTS:
Ground Truth Segmentation; GS: Generated Segmentation; GD: Generated Depth.



Figure 8: Comparison of depth completion methods applied to synthetic test set. RGB: input colour image; GTD: Ground
Truth Depth; DH: Depth Holes; FDF: Fourier based Depth Filling [1]; GTS: Global and Local Completion [7]; ICA:
Inpainting with Contextual Attention [12]; GIF: Guided Inpainting and Filtering [9].


