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Abstract

In this work, the issue of depth filling is addressed using a self-supervised feature
learning model that predicts missing depth pixel values based on the context and
structure of the scene. A fully-convolutional generative model is conditioned on
the available depth information and full RGB colour information from the scene
and trained in an adversarial fashion to complete scene depth. Since ground truth
depth is not readily available, synthetic data is instead used with a separate model
developed to predict where holes would appear in a sensed (non-synthetic) depth
image based on the contents of the RGB image. The resulting synthetic data with
realistic holes is utilized in training the depth filling model which makes joint use
of a reconstruction loss which employs the Discrete Cosine Transform for more
realistic outputs, an adversarial loss which measures the distribution distances via
the Wasserstein metric and a bottleneck feature loss that aids in better contextual
feature execration. Additionally, the model is adversarially adapted to perform
well on naturally-obtained data with no available ground truth. Qualitative and
quantitative evaluations demonstrate the efficacy of the approach compared to
contemporary depth filling techniques. The strength of the feature learning ca-
pabilities of the resulting deep network model is also demonstrated by performing
the task of monocular depth estimation using our pre-trained depth hole filling
model as the initialization for subsequent transfer learning.
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1. Introduction

The world is visually diverse, irregular and contrastingly structured at the same
time. Three-dimensional scenes containing depth information are highly applica-
ble within visual systems such as autonomous driving, augmented reality, envi-
ronment modelling and alike. Moreover, recent achievements in depth capture
technologies, including time-of-flight cameras, stereo correspondence and struc-
tured light devices, have made depth accessible in any scene understanding pro-
cess. However, complete (hole-free) scene depth cannot be acquired facilely us-
ing commercial devices and even high-performance depth sensing solutions suffer
from a range of environmental noise issues that preclude the recovery of hole-free
scene depth under all conditions. This work is an exploration into whether a state-
of-the-art learning based approach is capable of understanding the structures and
intricacies of a scene, just as humans are, to predict the missing parts of scene
depth as a standalone real-time portion of any visual system.

Image completion is considered challenging as it is inherently ill-posed. RGB
completion approaches can achieve plausible results, using either local or non-
local information [1, 2, 3, 4, 5]. However, due to the differences between depth
and colour images (e.g., absence of granular texture, object separation, and in-
scene transferability of varying depth sub-regions), conventional colour image
inpainting is considerably less effective within the depth modality [6].

Some depth filling techniques leverage classic image inpainting approaches to
complete depth [7]. There have also been attempts to fill a target region in one
of a set of multi-view photographs [8], to fill depth using exemplar-based image
completion [9], and a myriad of approaches utilizing filters [10], temporal-based
methods [11], reconstruction-based methods [12], and others [13, 14, 15].

Deep neural networks have recently been successfully utilized for image styl-
ization [16, 17], super-resolution [18, 19, 20], and colorization [21]. In the realm
of image completion, Pathak et al. [22] propose a context encoder which can
predict missing regions in a colour image using an adversarial [23] and a recon-
struction loss (`2). Although the model produces promising results, the absence of
fine texture and the existence of visible artefacts near the boundaries of the target
region point to flaws in the learning mechanism within the framework.

In a related work, Yeh et al. [24] utilize an analogous framework with similar
loss functions to map the input image with missing or corrupted regions to a la-
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tent vector, which in turn is passed through their generator that recovers the target
content. Despite the large amount of corruption applied to the input, the model
generates perceptually plausible outputs. Nevertheless, blurring effects and un-
wanted artefacts persist in spite of the low resolution of the images.

Yang et al. [25] propose a joint optimization framework composed of two
separate networks, a content encoder, based on [22], which is tasked to preserve
contextual structures within the image, and a texture network, which enforces
similarity of the fine texture within and without the target region using neural
patches [26]. The model is capable of completing higher resolution images than
its two earlier counterparts [22, 24] but at the cost of greater inference time since
the final output is not achievable via a single forward pass.

Regarding depth images, advances have been made in monocular depth esti-
mation [27, 28, 29, 30, 31] and depth super-resolution [32]. Here, we utilize a
generative model trained on synthetic data [33, 34] to complete depth. Since the
model is expected to synthesize large portions of depth, it has to adapt to learning
image structures and semantics. In existing works on learning-based colour image
completion [22, 24, 25], training requires large datasets. The complete image is
often considered as the ground truth, and the input is created by adding noise or
sparse corruptions [24], removing rectangular blocks [22, 24, 25], or cutting ran-
dom regions from the image [22]. In the realm of depth filling, however, no such
large datasets exist that contain large quantities of ground truth (hole-free) depth.
Consequently, synthetic data needs to be acquired from a graphically rendered
virtual environment primarily designed for a gaming application [35].

Since depth holes are neither random nor manually created, they are pre-
dictable, in that they occur due to specific scene features or the capture device.
For instance, featureless surfaces such as blank walls and roads, reflective objects,
and depth discontinuities, among others can cause depth holes. As a result of
this predictability, the location of a hole occurrence can be learned via a sepa-
rate model trained to predict where holes would be in a depth image based on the
features present in the scene and the assumption of a specific capture approach.

When high-quality ground truth exists, a model can be naively trained based
on a simplistic reconstruction loss (`1 or `2). However, due to the multi-modality
of image completion, a model trained in this way tends to generate the average
of the multiple possible modes in the predictions, which results in an output con-
taining blurring effects. This is why the techniques in [22, 24, 25] and other
generative models [36, 37] leverage adversarial training [23] as this assists with
mode selection to generate realistic results. However, approaches using Genera-
tive Adversarial Networks (GAN) [22, 23, 24, 25] suffer from certain flaws such
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Figure 1: A demonstration of how the DCT makes the absolute deviations loss more susceptible
to blurring. Note that the `1 distance between the images in the frequency domain is higher and
therefore a great tool to identify blurring.

as unstable training, difficulties in reaching an equilibrium, and vanishing gradi-
ents due to premature discriminator optimality and other issues [38, 39, 40]. Here,
we utilize an improved adversarial framework [39] that avoids such issues.

Even though an adversarial loss can help diffuse blurring effects, the goal
of the adversary should be generating a more realistic image across the board
and blurring artefacts still occasionally make their way to the output. This is
because the generator feels safer averaging than selecting values. To ease the
burden of de-blurring on the adversary, we propose the addition of a loss term
based on the Discrete Cosine Transform (DCT) in addition to the conventional `1
loss. The DCT preserves an accurate representation of the image structure in its
spatial frequency content, which is why it has long been used in de-blurring [41],
compression [42] and alike. We utilize the absolute deviations loss (`1) in the
frequency domain, as this error is far more obvious when the DCT is applied to a
blurry averaged image. As seen in Figure 1, the `1 distance between the original
image and the blurry image, both in the spatial domain, is not very large, but when
the same images are transformed into the frequency domain using the DCT, the `1
error is much larger and therefore a better indicator of blurring effects.

The task of our generator consists of two stages: reducing the input into a com-
pact representation of itself in the feature space (encoding) and reconstructing the
image from these compact features (decoding). Up-convolutions, of any kind, are
fraught with intrinsic unpredictability and can lead to bad salient edges and ab-
sence of fine texture. As a result, ensuring that the reconstruction starts from a
correct and viable feature representation is paramount. We use the feature repre-
sentations produced in the generator bottleneck in our loss to make sure the scene
representation is correctly captured before reconstruction. While the sole use of
this as a loss function is inadvisable and can lead to high-frequency artefacts, it is
a helpful complement to the reconstruction and adversarial losses.

Our approach is meant to fill holes in depth images acquired via commercially
and computationally inexpensive tools (a stereo camera and established stereo
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correspondence approaches such as [43, 44]) and not in pixel-perfect synthetic
depth images only. Therefore, as part of our training procedure, it is vital to guide
the model toward capturing the distribution of the natural data. With this in mind,
a domain transfer network is trained within the framework to rectify the model
such that real-world images can be viable inputs during inference. In short, the
contributions of our work are as follows:

• Novelty - no comparable approach utilizes a generative model using the
Earth Mover’s distance to complete depth via the Discrete Cosine Transform
based on a synthetic training corpus with predicted holes.
• Accuracy - the approach is far more efficient and accurate than comparators

(conventional image completion techniques) within a side-by-side compar-
ison framework (Tables 2 and 3; Figures 10 and 11).
• Representation Learning - our model is capable of learning better seman-

tics and context as illustrated by superior sharp and artefact-free qualitative
outputs when performing monocular depth estimation (Figures 12 and 13).

In the following section, we present an overview of the literature relevant to
this work. Section 3 provides a discussion on the data preparation process and
Section 4 contains a detailed outline of the proposed hole filling approach. Results
are evaluated in Section 5 and the work is finally concluded in Section 6.

2. Related Work

There have recently been remarkable strides made in complex learning-based
computer vision problems such as image classification [45, 46, 47, 48, 49, 50],
semantic segmentation [51, 52, 53], and image generation [23, 36, 38, 39, 54, 55,
56]. Inspired by the capabilities of recent generative models [22, 23, 36, 38, 39],
we attempt to complete depth images by learning the details of a scene.

Generative Adversarial Networks (GAN) have revolutionized the field and are
capable of producing semantically sound samples by creating a competition be-
tween a generator (G), which endeavours to capture the data distribution, and a
discriminator (Dis), which judges the generator output and penalizes unrealis-
tic images. Both networks are trained simultaneously to achieve an equilibrium.
More formally put, this competition follows the minimax objective [23]:

min
G

max
Dis

E
x∼Pr

[log(Dis(x))] + E
x̃∼Pg

[log(1−Dis(x̃))], (1)
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where Pr is the data distribution, Pg is the model distribution defined by x̃ =
G(z), z ∼ p(z), with z being the random noise vector used as the generator input.

Training a GAN is rife with instability and potential issues [40], one of which
is that the discriminator can rapidly reach optimality and easily distinguish be-
tween generator outputs and samples from the real distribution, and hence, will
not produce meaningful gradients for training. In [38], the Earth Mover’s distance
(EM) or Wasserstein-1 metric is used to measure the distance between two distri-
butions. The EM distance, EM(p, q), is the minimum cost of moving distribution
elements (earth mass) to transform a distribution q to distribution p (cost = mass×
transport distance) and the Wasserstein GAN [38] has an aptly named “critic” (C)
instead of the conventional discriminator since it is no longer a classifier. Using
the EM distance, the critic will not solely judge whether a sample is fake or real
as a discrete binary decision, but how real or how fake the generated sample is as
a continuous regressive output. The critic will converge to a linear function with
ever-present meaningful gradients and cannot saturate. The loss in the Wasserstein
GAN is created via the Kantorovich-Rubinstein duality [38]:

min
G

max
C∈F

E
x∼Pr

[C(x)]− E
x̃∼Pg

[C(x̃)], (2)

where F is the set of 1-Lipschitz functions, Pr the true distribution, Pg the model
distribution defined by x̃ = G(z), z ∼ p(z), and z random noise. If C is optimal,
minimizing the value function with respect to G minimizes EM(Pr,Pg).

The Wasserstein GAN does not suffer from vanishing gradients and is immune
to mode collapse. However, to guarantee continuity, a Lipschitz constraint must be
enforced, which is achieved in [38] by clamping the weights. This creates a new
clamping hyper-parameter, which needs to be carefully tuned to the distribution.
A gradient norm penalty with respect to the critic input is proposed in [39] to
replace clamping. Since a differentiable function is 1-Lipschitz if and only if
its gradient norm is no more than 1 everywhere, [39] limits the critic gradient
norm by penalizing the function on the gradient norm for samples x̂ ∼ Px̂, where
x̂ = εx+ (1− ε)x̃, 0 < ε < 1. The new loss is therefore as follows [39]:

min
G

max
C

E
x̃∼Pg

[C(x̃)]− E
x∼Pr

[C(x)] + λ E
x̂∼Px̂

[(||Ox̂C(x̂)||2 − 1)2], (3)

where Pg is the model distribution defined by x̃ = G(z), z ∼ p(z), with z be-
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Source Domain
(Synthetic Data)

Model Distribution with Domain Transfer

Figure 2: A demonstration of modelling two separate data domain distributions via domain trans-
fer. A model only trained on samples from the source domain (blue) can capture the target data
distribution (red) using domain adaptation.

ing the random noise vector, Pr is the true data distribution, and Px̂ is implicitly
defined to sample uniformly along straight lines between pairs of points sampled
from Pr and Pg [39]. Here, we use the same critic for our adversarial loss.

In this work, our model is trained on a synthetic dataset of RGB-D images to
perform depth filling. However, due to dataset bias [57], a model trained using
data from a specific domain does not necessarily generalize to other data domains.
In other words, a model trained on synthetic data may not perform well on real-
world data. Therefore, our model may not succeed with naturally obtained depth
images, which would make it utterly useless from a practical standpoint.

While the typical solution to this problem is to fine-tune the network on the
novel data, fitting the large number of parameters in a deep network to a new
dataset requires a large amount of data, which can be very time-consuming, ex-
pensive, or intractable to obtain. This is often the reason why synthetic data is
used in the first place, as it is in our case. One strategy often to solve the prob-
lem is to minimize the distance between the source and target feature distributions
[58, 59]. Figure 2 demonstrates how domain adaptation can aid in modelling the
distribution of both the source domain (represented in blue), used for training the
model, and the target domain (represented in red), which is the focus of the final
objective. Using domain transfer, both distributions can be captured within the
model even if the model is only trained on one of them.

Some approaches have taken advantage of MMD (maximum mean discrep-
ancy) which calculates the norm of the distance between the domains to reduce the
discrepancy [60], whereas others have taken to using adversarial training which
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leads to a representation that minimizes the domain discrepancy while able to dis-
criminate the source labels easily [59]. Although most of the above-mentioned
techniques focus on discriminative models, research concentrating on generative
tasks has also utilized domain adaptation [61].

We propose a domain critic network, which uses the Wasserstein metric to
measure the distance between the source (synthetic data) and the target (real-
world data) and minimizes this difference by comparing the generator outputs
when synthetic and real-world images are used as the input, while the generator is
simultaneously trained to fill synthetic holes using synthetic ground truth. Further
details of the inner-workings of the proposed approach are explained in Section 4.

3. Data Preparation

In a supervised learning approach, ground truth labels are required during
training. Since the objective here is to fill depth holes, ground truth hole-free
depth is required. However, obtaining complete depth from the real world is not
practically possible. Consequently, we use synthetic data acquired from a graphi-
cally rendered gaming environment focusing on driving scenarios, akin to [35].

Necessary steps were taken to avoid dataset bias. Co-registered colour and
depth images are captured from a camera view set in front of a virtual car as it
automatically drives. An image is captured every 60 frames as the height and field
of view of the camera are randomly changed after every capture. The process is
carried out in numerous weather and lighting conditions at different times of day
to avoid any possible model over-fitting. A total of 130,000 images were captured
with 100,000 used for training and 30,000 set aside for testing.

During training, depth images are used as ground truth but corrupted depth im-
ages (with holes) of the same scenes are required as inputs. Rather than randomly
cutting out sections of the image, we opt for creating realistic holes with the char-
acteristics of those found in real-world depth images, which occur in stereo cor-
respondence due to the existence of featureless or shiny surfaces, unclear object
separation and distant objects, among others [6]. To produce these semantically
meaningful holes, a separate model is needed to predict depth holes by means of
pixel-wise classification, e.g., [51, 62]. The objective is to produce a hole mask,
which represents regions in the depth image likely to contain holes. Since within
our synthetic dataset, only complete pixel-perfect depth is available, simulating
corrupted depth, similar to what is naturally sensed in the real world, is important.
The details of our “hole prediction” stage is explained in the following.
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Figure 3: An overview of the network architecture used during the hole prediction stage.

Model
Class Label Overall Performance

Hole Non-Hole Class Average Global Average

Hole Prediction 90.31 92.88 91.55 91.83

Table 1: Statistical accuracy of hole prediction over an unseen test set of 5,000 examples images.

3.1. Hole Prediction
Our hole prediction model is a fully convolutional encoder-decoder network

inspired by [45, 51] with nine convolutional layers in both the encoder and the
decoder. No fully-connected layers are used to maintain a smaller number of net-
work parameters and therefore, easier and faster training and inference. Every
decoder layer corresponds to an encoder layer, with the last decoder layer con-
necting to a soft-max classifier. Each convolutional layer is followed by batch
normalization [63] and a ReLU. Max-pooling is used in the sub-sampling to pro-
duce features that are invariant to small translational shifts in the input. In the de-
coder, max-unpooling [51] (which uses the recorded locations of maxima within
the region of each max-pooling operation) is applied to preserve the feature struc-
ture and boundary information. The network architecture is seen in Figure 3.

A number of stereo images (40,000) from the KITTI dataset [64] was used to
train the network by estimating the disparity via Semi-Global Matching (SGM)
[43] and generating a hole mask (M ) which indicates which pixels are holes i.e.
regions for which disparity was not recovered (with a value of zero) and which are
non-holes (with a value of one). Although SGM is used, this is interchangeable
with any depth via disparity or active depth capture approach. The left RGB
images are used as inputs with the generated masks as ground truths. Cross-
entropy is used as the loss function with the network weights randomly initialized.

Our hole prediction process is self-supervised, meaning no human annotation
or intervention is necessary at any point, with the ground truth calculated using
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a disparity estimation approach [43]. Although this makes the ground truth for
hole prediction unreliable, consequently making any accurate quantitative analy-
ses meaningless, it suits the purposes of this endeavour. However, when tested on
a set of 5,000 previously-unseen images, the statistical correlation to the ground
truth occurrence of holes within the image is shown to be accurate (see Table 1).

Qualitative evaluations reveal that holes are predicted where expected. From
Figure 4, we see that in regions where camera overlap is absent or featureless
surfaces, sparse shrubbery, unclear object boundaries, and very distant objects are
present, such pixels are correctly classified as holes. This model is subsequently
used to infer where the holes would be in the hole-free ground truth synthetic
RGB-D images (discussed earlier) needed for training the hole filling model.

4. Hole Filling

Taking advantage of the adversarial training procedures present within the lit-
erature [38, 39], our process involves three networks: a generator (G) which fol-
lows an encoder-decoder pipeline and is tasked with generating the completed
depth, an image critic (C) which judges the generator output in an adversarial
fashion and a domain transfer network (D) which provides the possibility of ap-
plying the model (trained on synthetic data) to natural images without ground
truth depth. The interactions between all the networks are demonstrated in Figure
5. In this section, details regarding the hole filling process are briefly outlined.

4.1. Missing Depth Prediction
Depth filling is performed by a generator with an encoder-decoder pipeline

(the only network used during inference). A synthetic 4-channel RGB-D image

Figure 4: Examples of the hole prediction model applied to a test set of 5,000 images (RGB) from
[64]. Note that featureless surfaces and sky are correctly identified as holes in the outputs (Holes).
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Figure 5: The general framework of the entire model. The pipeline contains a generator (the only
network used during inference, as explained in Section 4.1), an image critic to ensure the high
fidelity of the generated depth (Section 4.2.2) and a domain critic to enforce generalization over
real-world data (Section 4.2.4). Loss functions and gradient flows are shown for all components.

containing holes (predicted by the model discussed in Section 3.1) is used as the
encoder input, which creates a compact set of feature representations. This set
of feature representations is then passed through the decoder, creating a single
channel depth image with the missing regions filled if necessary (exceptions being
very distant objects and sky, for which no valid depth should or does exist).

For the sake of consistency, the same architecture (Figure 6) is used for both
the hole prediction network (Section 3.1) and the generator. Since the goal is to
test the learning capabilities of the model, the weights are randomly initialized and
training procedure commences from scratch. The network is fully-convolutional
with nine convolutional layers, batch normalization and max-pooling operations
(Figure 6). A large feature map of 78 × 24 × 256 is produced in the bottleneck.
Many past works [22, 24, 25] advocate sub-sampling the image down to a small
feature map passed through a fully-connected layer to allow for “entire image
context reasoning for each unit” [22]. We experimented with fully-connected
layers but other than a significant increase in the number of parameters, training
difficulty and inference time, no noticeable difference in the quality of the results
was observed. This means direct connections between different regions of a single
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Figure 6: Network architectures (generator, image critic and domain critic) used in the training.

feature map is not necessary for this task.
During inference, after the generator outputs the completed depth image, the

regions filled by the network are blended using the approach in [65] into the hole
regions within the original hole-ridden input image to create the final results.

4.2. Loss Function
Our resulting model performs depth filling by regressing to the ground truth

depth content of the unknown regions. Using a reconstruction loss, we ensure
the filled regions are contextually sound, coherent and in accordance with the
known regions. The addition of an adversarial loss [39] results in plausible outputs
since the adversarial framework will enforce mode selection. To ensure robust
contextual feature extraction and better encoder training, the distance is measured
between the feature maps produced in the generator bottleneck when the depth
channel of the input contains holes and when the ground depth is used as the
input. The generator is then trained to minimize this distance. This guarantees
correct and balanced training of the encoder and the decoder within the generator.

Additionally, even with perfect training, a network trained on synthetic data
cannot be expected to perform equally well on naturally sensed depth images. A
domain transfer loss is consequently used to ensure that our approach can com-
plete naturally sensed depth images. A joint loss function is thus formulated con-
sisting of four components:- reconstruction loss (Section 4.2.1), adversarial loss
(Section 4.2.2), bottleneck feature loss (Section 4.2.3) and domain transfer loss
(Section 4.2.4) - each of which are subsequently detailed.

4.2.1. Reconstruction Loss
To maintain structural continuity and semantic coherence in the output, a re-

construction error against the ground truth is needed. However, to achieve sharper
and more crisp results and to ease the burden on the adversarial image critic to
enforce realism, we utilize a two-term reconstruction loss. Given a ground truth
depth y, our generator (G) takes an input x, which itself is created based on y
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and generates G(x). In this context, our hole prediction model (Section 3.1) has
produced a binary hole mask, M , in which 0 denotes an unknown region (hole)
and 1 a known depth region. The generator input, x, is obtained as follows:

x = y �M, (4)

where � is the element-wise product operation. We use a masked `1 distance as
part of our reconstruction loss:

Lrec−`1 = ||(1−M)�G(x)− (1−M)� y||1 (5)

Experiments with `2 loss returned the same results. With the known issues of
a reconstruction loss, blurry images are often produced, which is why the use of
adversarial losses is prevalent. However, here we add another term to our loss to
partly alleviate the issue of blurring. Since the Discrete Cosine Transform (DCT)
can be used to encode a unique embedding of spatial image structure, avoiding
the limitations of `1 pixel space embedding (Figure 1), the entire (unmasked) gen-
erated output G(x) and the ground truth depth y both undergo the transform and
the distance is measured within the projected DCT space:

Lrec−dct = ||DCT (G(x))−DCT (y)||1 (6)

The final reconstruction loss used in this work is therefore:

Lrec = Lrec−`1 + Lrec−dct (7)

Although the addition of the Lrec−dct reduces blurring, the overall quality of
the output is still subject to issues due to the generality of the `1 distance, ensuring
an adversarial component is subsequently needed.

4.2.2. Adversarial Loss
Unlike most generative models, our network is conditioned on the known re-

gions of the depth and the entire RGB and is tasked with generating the full depth.
Our generator approximates a function which maps samples from the noisy dis-
tribution x to the true data distribution y, G : x 7→ y. No noise or drop-out is
used and the image critic is not conditioned like the generator, and sees the entire
generator output, such that it cannot take advantage of structural discontinuities
or possible differences in the overall intensities within the depth in its judgement.
Therefore, it improves the whole generator output and not just the missing regions.
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The objective of the image critic is hence measuring the difference (using theEM
metric) between real data samples and generated ones. Given that ỹ = G(x), the
objective function of the critic is:

min
G

max
C

E
ỹ∼Pg

[C(ỹ)]− E
y∼Pr

[C(y)] + λ E
x̂∼Px̂

[(||Ox̂C(x̂)||2 − 1)2], (8)

where Pg is the model distribution defined by ỹ = G(x), with x being the genera-
tor input sampled from the noisy distribution, Pr is the true data distribution, and
Px̂ is implicitly defined to sample uniformly along straight lines between pairs of
points sampled from Pr and Pg [39]. The generator objective is to fool the image
critic by creating increasingly more realistic outputs and getting closer to the true
data distribution. The adversarial loss is thus as follows:

Ladv = max
C
− E

ỹ∼Pg

[C(ỹ)], (9)

where once again, Pg is the model distribution defined by ỹ = G(x), with x being
the generator input sampled from the noisy distribution. The generator and the
image critic are trained iteratively while the critic is kept optimal at all times (in
each epoch, it is trained 25 times per each generator training iteration for the first
100 generator iterations and 5 times per each generator iteration for the rest of
the training process). The critic is a fully-convolutional network with no batch
normalization. An overview of its architecture is seen in Figure 6 (image critic).

4.2.3. Bottleneck Feature Loss
In a typical convolutional encoder-decoder pipeline [22, 51], the convolutional

layers in the encoder and the decoder learn independently. This can be advanta-
geous as it provides a wide learning domain for the network. However, conver-
gence to optimality can be slow and difficult.

Since the generator needs to predict any missing depth based on the RGB view
and known depth regions, we can improve the generator training by making sure
the encoder is creating the right feature representation of the entire scene, and the
decoder is, in turn, starting from the best set of feature maps to produce the output.

Using the ground truth depth as the input and comparing the generated bot-
tleneck features with the features produced from the regular input (depth with
holes), we can guarantee the encoder is rightly trained to capture the full infor-
mation available in the scene based on context and inferred geometry rather than
local low-level scene features. As Figure 7 demonstrates, the ground truth depth
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Figure 7: A demonstration of how the bottleneck feature distance is calculated. Depth with holes
(left) and ground truth depth (right) are used as inputs to the generator encoder. Minimizing the
absolute difference between the feature maps extracted from the bottleneck is part of the objective.

is used as the input for the generator (right side of the figure) and the depth image
with holes is also used as the input (left side of the figure). The distance between
such features extracted from the generator bottleneck is then used as a component
of the loss. Subsequently, our loss includes the distance between the generated
bottleneck features from the ground truth and the noisy input:

Lfeat = ||Gencoder(x)−Gencoder(y)||1 (10)

In all previous loss terms, x as the input to the generator was a 4-channel RGB-
D image with the depth channel containing holes and y a single-channel hole-free
depth image. In Eqn. 10, however, y is also a 4-channel RGB-D image, but the
depth channel is the ground truth depth (hole-free). For the sake of consistency,
the same notation is used in Eqn. 10.

4.2.4. Domain Transfer Loss
All the training data used here are synthetic images, yet for the model to be

practically viable, it has to perform on real-world images. Since no naturally-
obtained ground truth is available for training, the generator is also trained to
recognize natural data in an adversarial fashion (similar to Section 4.2.2).

Let all synthetic inputs (source domain) be denoted by xs with synthetic ground
truth ys. All naturally-obtained data (target domain) are denoted by xt. Note that
there is no yt since our target domain (naturally-sensed images) has no ground
truth (hole-free) depth. A domain critic network (D) is used to measure the dif-
ference (in EM distance) between the generator output when the input is sampled
from the source domain (xs) and when the input is from the target domain xt.
The gradients will be used to train the generator and the generator is subsequently
forced to model the distribution of both the source and the target domains. Given
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that ỹs = G(xs) and ỹt = G(xt), the objective function of the domain critic is:

min
G

max
D

E
ỹt∼Pt

[D(ỹt)]− E
ys∼Ps

[D(ỹs)] + λ E
x̂∼Px̂

[(||Ox̂D(x̂)||2 − 1)2], (11)

where Pt is the target model distribution defined by ỹt = G(xt), with xt being
the generator input sampled from the natural data distribution, Ps is the source
data distribution defined by ỹs = G(xs), with xs being the generator input sam-
pled from the synthetic data distribution, and Px̂ is implicitly defined to sample
uniformly along straight lines between pairs of points from Pt and Ps [39].

The generator objective is to fool the domain critic by approximating both
domain distributions. The domain transfer loss is as follows:

LdomTran = max
D
− E

ỹt∼Pt

[D(ỹt)], (12)

where Pt is the natural domain distribution defined by ỹt = G(xt), with xt being
the generator input from natural data. The generator and the domain critic are
trained iteratively while the domain critic is always kept optimal, much like the
critic in Section 4.2.2. The domain critic architecture is the same as the image
critic, as seen in Figure 6. Weight sharing between the image critic and the domain
critic was attempted, but we could not achieve convergence with that setup.

Synthetic ground truth ys does not come into play in domain transfer training
and the model is trained on the source domain to approximate the data distribution
(from which ys is sampled). The domain transfer loss thus forces the generator
to comprehend both the natural and synthetic distributions. Additionally, over-
training the model using domain transfer leads to artefacts in the outputs. Thus,
this term is only used in a quarter of the total number of epochs (see Section
5.1). It is important to note that this loss component was originally used in the
training objective of the hole prediction network (Section 3.1) as well, but with no
evidence for any significant improvement in the output.

4.2.5. Joint Loss
Based on Eqns. 7 (Section 4.2.1), 9 (Section 4.2.2), 10 (Section 4.2.3) and 12

(Section 4.2.4), our overall joint loss function is finally defined as:

L = λrecLrec + λadvLadv + λfeatLfeat + λdomTranLdomTran (13)

The choice of the weights λrec, λadv, λfeat and λdomTran is empirical.
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Figure 8: Hole filling results when different components of the loss function are added to the joint
loss function. Note that the results of the full proposed approach (with all four components) are
substantially superior.

5. Experiments

A total of 30,000 synthetic images were used as part of the test set. More-
over, a set of 5,000 locally-captured images consisting of RGB and registered
depth containing holes were used for training as part of domain critic training and
subsequently used to test the model on real-world natural images.

5.1. Implementation Details
All network implementation and training is done in PyTorch [66] and Caffe

[67]. The Adam optimization method [68] is used for this problem (momentum
β1 = 0.5, β2 = 0.999, and initial learning rate α = 0.0001), and the coefficients
in the loss function are empirically chosen to be λrec = 100, λadv = 0.01, λfeat =
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Method Mean `1 Error Mean `2 Error PSNR (dB) SSIM (−1, 1)

SSI [14] 5.66± 1.033 2.96± 0.512 16.04± 4.819 0.772± 0.220
FMM [4] 2.85± 0.491 0.89± 0.198 20.66± 2.030 0.780± 0.082
EBI [3] 2.39± 0.629 0.92± 0.091 20.65± 3.122 0.787± 0.139
GIF [10] 2.77± 0.518 0.86± 0.068 20.78± 1.910 0.764± 0.125
FBI [7] 2.36± 0.602 0.91± 0.105 20.67± 2.891 0.788± 0.106

`1 Loss Only 2.96± 0.489 0.28± 0.038 25.99± 2.890 0.819± 0.112

`1 + dct Loss 2.47± 0.422 0.19± 0.047 27.98± 2.019 0.872± 0.132
`1 + dct + adv Loss 2.33± 0.405 0.17± 0.050 28.50± 1.105 0.882± 0.096

CE [22] (`2 + adv Loss) 2.18± 0.391 0.18± 0.034 28.21± 1.359 0.877± 0.108

Full Proposed Approach 1.79 ±0.401 0.08 ±0.011 31.89 ±2.012 0.928 ±0.110

Table 2: Numerical comparison of our approach, our ablated method and other hole filling meth-
ods, such as Fourier-based inpainting [7] (FBI), smoothing second order inpainting [14] (SSI),
exemplar-based inpainting [3], fast marching method [4] (FFM), guided inpainting and filtering
technique [10] (GIF). While disparity error values are lower for more realistic images, with Peak
Signal-to-Noise Ratio (PNSR) and Structural Similarity index (SSIM), higher values are better.

0.01, λdomTran = 0.01 based on a preliminary grid search with coefficients chang-
ing an order of magnitude between 0.01 and 100. The networks used in the hole
filling model are trained for 20 epochs over the entire dataset with a batch-size of
7 images. The domain transfer loss, LdomTran, is used only every other epoch and
only in the last 10 epochs to avoid introducing undesirable effects in the outputs.

5.2. Ablation Study
A crucial part of this work was interpreting the necessity of the components

of our loss function. The model was trained from random initialization each time
after adding a single component of the loss function. As seen in Figure 8, when
a simple reconstruction loss (`1) is solely used, large holes are ubiquitously filled
with averaged blurry content (blue boxes in Figure 8). The addition of the DCT
helps in alleviating the issue, but blurring and unwanted artefacts still exist. The
adversarial loss clears the image to a great extent but the use of full joint loss
function (except of course the domain transfer portion, which is only relevant to
natural images) creates a sharp and realistic image, with minimal differences with
the ground truth. The significant similarities seen between the final results and the
ground truth is in part because the model is conditioned on the RGB view, as seen
in Figure 8 (D) where the RGB is not used in the training.

Not only are the images realistic to the human eye, quantitative results in Table
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Figure 9: Comparing the results of our approach on natural real-world data with and without do-
main transfer. It is clear that with domain transfer, the hole filling model (trained on synthetic data)
applied to non-synthetic images outperforms the model not using any form of domain adaptation.

2 demonstrate that our results are clearly superior to the prior works of [7], [14],
[3], [4], and [10]. As seen in Table 2, we use four metrics to compare the results
against the ground truth (mean absolute difference, mean squared difference, peak
signal-to-noise ratio and the structural similarity index). Overall, Table 2 shows a
significant reduction in prediction errors of the proposed approach against ground
truth with negligible standard deviation indicating consistent performance over
the randomly selected test set of 30,000 synthetic images.

5.3. Evaluation using Non-Synthetic Data
The last component of our loss fits the model to naturally-sensed images as

well as the synthetic data. The effectiveness of this loss term is demonstrated in
Figure 9. Without data domain transfer, the network is incapable of producing
valid and meaningful results. The domain transfer loss is only used in a quarter
(1 in 4) of all training epochs to avoid over-fitting. The adversarial nature of our
domain adaptation can result in the generator attempting to produce pixel-perfect
depth images when a real-world image is given as its input and therefore removes
entire objects or synthesizes ones that should not be in the scene.

However, with the correct training, real-world depth images that are of far
lower quality than the synthetic ones can be filled in a realistic and consistent
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Figure 10: Comparing our approach with hole filling methods in [3, 4, 7, 10, 14] (synthetic data).

manner. As Figure 9 demonstrates, naturally-sensed depth images are filled in a
more plausible manner with domain transfer as part of the training (Figure 9 -
fourth column) than with no domain adaptation (Figure 9 - third column).

5.4. Comparison to Contemporary Approaches
The approach is also evaluated against classical hole filling techniques. We

used both synthetic and natural images to test the performance, and since ground
truth depth is available for the synthetic data, numerical analysis is possible in the
evaluation. A Fourier-based inpainting approach [7] (FBI), a smoothing second
order inpainting [14] (SSI), an exemplar-based inpainting [3], a fast marching
method [4] (FFM) and a guided inpainting and filtering technique [10] (GIF) are
chosen for their accuracy and their capability of handling relatively large holes.

As indicated in Table 2, our approach outperforms the comparators by a large
margin, even if the loss is stripped down to a simple reconstruction loss. Since
the synthetic images are of extremely high quality (pixel-perfect dense depth in-
formation with granular texture and accurate object boundaries), they should be
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Figure 11: Comparing the results of our approach against other hole filling methods ([3, 4, 7, 10,
14]) with natural real-world data.

prime candidates for traditional hole filling methods. However, since learning the
semantics, structures and the context of a scene plays a vital role in predicting
its contents, our approach produces more realistic results with almost no anoma-
lies, blurring or any undesirable artefacts, as seen in Figure 10. Based on Figure
11, similar conclusions can be drawn when it comes to natural real-world images,
where the depth is of significantly lower quality compared to synthetic data. The
capabilities of our approach over real-world data are owed to the domain transfer
component of our loss function (Section 5.3).

Method FBI [7] EBI [3] SSI [14] GIF [10] FMM [4] Our Approach

Run-Time (ms) >36e5 >12e5 33.4e3 14.32e2 82.8e1 7.47

Table 3: Comparing the run-time of our approach with classical hole-filling techniques. Note that
only requiring a single forward pass, our approach is highly efficient using modern hardware.
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Figure 12: The results of our approach re-purposed to estimate depth from an RGB image com-
pared against [27] and [28] with synthetic data.

Regarding efficiency, the runtime of our approach heavily depends on the
hardware. All training and inference were done using an NVIDIA GeForce GTX
1080 Ti GPU and our mean inference time (requiring a single forward pass) is
7.47 milliseconds based on processing a 192 × 640 image (4 channel, RGB-D).
Table 3 provides a comparative analysis of our approach and the comparators.

5.5. Feature Learning
Our model is shown to be capable of learning scene context and content in

its attempt to produce a complete hole-free depth image. Since our technique
does not utilize off-the-shelf classic network architectures, quantifying the feature
strength within the network weights used as a pre-training stage for tasks such as
classification and detection would not be possible. However, we could evaluate
our features in a task somewhat similar to depth filling, namely monocular depth
estimation, despite the differences between the two problems, e.g. the different
low and high level cues that need to be learned by the network. We re-purpose
our model to estimate scene depth based on a single RGB view by initializing the
network with the pre-trained weights from the depth completion model (excluding
the depth channel of the first convolutional layer). Fine-tuning is only performed
over a single epoch of the dataset without any layer freezing. The results are
compared with state-of-the-art approaches [27, 28, 29]. Qualitative results based
on synthetic images used as inputs are seen in Figure 12.

No domain adaptation to our real-world set was performed during this exper-
iment but the models are evaluated using our real-world test images, nonetheless.
As seen in Figure 13, even though our network has never seen a real-world image
and data domain has not been transferred, we can see that our approach produces
sharper and more crisp depth information despite the anomalies that persist due to
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Figure 13: The results of our approach re-purposed to estimate depth from an RGB image com-
pared against [27] and [28] with natural real-world data.

domain bias issues. Quantitative analysis using synthetic ground truth images is
presented in Table 4. While our approach cannot outperform directly-supervised
models trained on similar synthetic data [29], we can see it has succeeded in a task
it is not primarily designed for due to its strength in scene feature learning.

6. Conclusion

We have approached the problem of hole filling in depth images from a learn-
ing perspective by employ an adversarially trained self-supervised encoder/decoder
architecture. It is expected that if enough is learned about the contents and seman-
tics of a scene, missing regions of a depth image can be inferred given the known

Method Mean `1 Error Mean `2 Error PSNR (dB) SSIM (−1, 1)

Result of [28] 28.61 13.68 10.15 0.374
Result of [27] 14.46 3.93 14.22 0.565
Result of [29] 4.22 0.79 24.18 0.793
Our Result 4.97 0.88 22.35 0.778

Table 4: Our pre-trained model tasked with monocular depth estimation compared to [27, 28, 29].
More realistic images have lower error values, but with PNSR and SSIM, higher values are better.
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regions and the full RGB view. Our training is fully self-supervised, i.e. at no
point is annotation or human intervention necessary. The ground truth depth used
for training is acquired from a graphical environment developed for gaming and a
separate model is trained to infer where holes would be if the data were obtained
via stereo correspondence. The model objective is to minimize a loss consisting
of four loss components: reconstruction, adversarial, bottleneck feature and do-
main transfer loss, which results in filling depth holes, not only in synthetic depth
images but also in real-world data with no ground truth.

Even though the approach utilizes synthetic images for training and requires
a complicated mixture of parameters with their own weighting coefficients, qual-
itative and quantitative evaluations demonstrate how it can outperform competing
contemporary depth filling techniques. Moreover, the robust feature learning ca-
pabilities of our approach are clearly seen when it is used to estimate depth based
on a single RGB image, a task it is not primarily designed or trained to perform.

Currently, the proposed approach only uses the local spatial information within
the known regions of the depth and the complete RGB image to infer the missing
regions of the depth. However, as part of possible future work, the use of temporal
information available within a video sequence can greatly improve the quality of
depth completion results since features extracted from one frame can be used to
infer valuable information about the next. Additionally, using sparse or otherwise
irregular convolutions, naturally-sensed depth images can be used in the training
process making the model even more adaptable to real-world applications.
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