
Autoencoders Without Reconstruction

for Textural Anomaly Detection

Philip A. Adey1, Samet Akçay3, Magnus J. R. Bordewich1, Toby P. Breckon1,2

Department of {1Computer Science | 2Engineering}, Durham University, UK. 3Intel, UK.

Abstract—Automatic anomaly detection in natural textures
is a key component within quality control for a range of
high-speed, high-yield manufacturing industries that rely on
camera-based visual inspection techniques. Targeting anomaly
detection through the use of autoencoder reconstruction error
readily facilitates training on an often more plentiful set
of non-anomalous samples, without the explicit need for a
representative set of anomalous training samples that may
be difficult to source. Unfortunately, autoencoders struggle to
reconstruct high-frequency visual information and therefore,
such approaches often fail to achieve a low enough reconstruction
error for non-anomalous pixels. In this paper, we propose a
new approach in which the autoencoder is trained to directly
output the desired per-pixel measure of abnormality without first
having to perform reconstruction. This is achieved by corrupting
training samples with noise and then predicting how pixels need
to be shifted so as to remove the noise. Our direct approach
enables the model to compress anomaly scores for normal pixels
into a tight bound close to zero, resulting in very clean anomaly
segmentations that significantly improve performance. We also
introduce the Reflected ReLU output activation function that
better facilitates training under this direct regime by leaving
values that fall within the image dynamic range unmodified.
Overall, an average area under the ROC curve of 96% is achieved
on the texture classes of the MVTecAD benchmark dataset,
surpassing that achieved by all current state-of-the-art methods.

I. INTRODUCTION

We consider the problem of detecting abnormal or

anomalous regions within complex textural patterns such

as leather, wood or carpet. A solution to this problem

would be applicable in many industrial contexts including

the manufacture of electrical components and the production

of textiles, where anomalies may present in the form of

dents, folds, scratches, contaminants and other defects in the

product. The process of filtering defected samples could be

made more efficient by the introduction of automatic detection

systems based on modern machine learning. Unfortunately,

while there are invariably plentiful defect-free samples from

production, samples containing anomalies are much rarer

with a variation that represents only a limited subset of

all possible production flaws. This data imbalance poses a

challenge for some of the more commonly used machine

learning methods since they require large quantities of data

from all relevant distributions [1]. Therefore, there is naturally

an acute interest in anomaly detection approaches that perform

training (model construction) using only samples from the

normal, defect-free distribution. For the purpose of evaluating

such anomaly detection methods, Bergmann et al. [2] recently

released their MVTecAD dataset. This dataset consists of ten

object classes and five texture classes, with each class split

into defect-free samples for training and defected samples

for testing. Responding to the challenge represented by the

variation and complexity of this dataset, the main contributions

in this paper are:

• A new fast and simple methodology for training an

encoder-decoder architecture that allows the final layer

to directly represent the per-pixel anomaly scores.

• Introduction of the Reflected ReLU output activation

function that eases the training of the architecture under

this new methodology.

• Improved anomaly detection results on the MVTecAD

texture classes with respect to current state-of-the-art

methods [3]–[12]. We achieve an average Area Under the

ROC Curve (AUC) of 96% and consistent performance

across all texture classes.

We achieve state-of-the-art textural anomaly segmentation

results using a relatively simple architecture. In contrast, other

methods often employ more complex architectures such as

the Generative Adversarial Network (GAN) [6], [7], [13], or

the Variational Autoencoder (VAE) [8], [10]. In addition, our

proposed method is computationally light-weight and stable

during training.

II. BACKGROUND

Our proposed method relies upon previous work described

in this section. A conventional autoencoder is a multi-layer

perceptron network that encodes an input into a latent-space

representation and then attempts to decode this representation

into a reconstruction of the input [14]. During training,

distances between inputs and outputs are used to tune the

autoencoder towards making more faithful reconstructions.

Masci et al. [15] adapt this architecture by using convolutional

layers. These convolutional autoencoders are better suited to

operating on image data and are often applied to anomaly

detection in images and videos [5], [8], [10], [16].

Bengio et al. [17] introduce Denoising Autoencoders

(DAE). DAE function similarly to the conventional autoen-

coder except that the training inputs are intentionally corrupted

before encoding. DAE attempt to output a reconstruction of

the original clean input. Xu et al. [18] apply DAE in their

anomaly detection method.

Whatever variant of the autoencoder is employed, anomaly

detection is usually accomplished via one of two methods. The

first method utilises the inability of the model to reconstruct



novel inputs so that the reconstruction error becomes a

proxy for abnormality [16]. The second method uses the

learned encoding function as a dimensionality reduction

algorithm. Samples are compressed before being fed into a

subsequent classification algorithm for anomaly detection such

as K-Nearest Neighbours [19] or a one-class support vector

machine [18], [20].

Although autoencoder methods for anomaly detection vary,

they usually share two common features that impede their

performance: firstly, they use a loss function based on

the L1 or L2 distance between the input example and its

reconstruction, and secondly, the inability of the autoencoder

to effectively reconstruct high-frequency information is not

addressed. Bergmann et al. [5] point out the flaws in using

L1 or L2 loss and substitute them for a perceptual loss based

on Structural SIMilarity (SSIM) [21]. The main contribution

of this work is to address the second issue by training the

autoencoder to output the per-pixel anomaly map rather than

a reconstruction.

III. RELATED WORK

Numerous anomaly detection techniques have recently been

applied to the MVTecAD dataset released by Bergmann et

al. [2]. Bergmann et al. [5] themselves present two variants

of an autoencoder reconstruction method: one trained using

the L2 distance between the input and reconstruction and one

trained using a distance based on the SSIM measure. They test

these autoencoders alongside other contemporaneous anomaly

detection methods comprised of AnoGAN [6]; a Gaussian

Mixture Model (GMM) based method developed by Bottger

et al. [4]; and the method of Napoletano et al. [3], who cluster

features extracted from pretrained networks.

Since then, other researchers have tested new methods on

MVTecAD. Li et al. [9] propose a method they refer to as

Superpixel Masking and In-painting (SMAI). This method

uses the PEN-Net image in-painting network [22] to learn

how to restore normal images that have had a super-pixel

region masked out. Baur et al. [13] develop the P-Net

architecture to reconstruct input images from an encoding

of both texture and structure information and use a GAN

to improve the reconstruction quality. Liznerski et al. [12]

apply one-class classification on features extracted from a

fully convolutional network and finally, Liu et al. [8] and

Dehaene et al. [10] each develop a VAE-based method.

Liu et al. [8] attempt to improve the explainability of VAE

models via gradient-based attention maps and subsequently,

show that these attention maps are effective at localising

anomalies in images. Meanwhile, Dehaene et al. [10] propose

improving autoencoder reconstruction by projecting input

test samples onto the learned normal data manifold via

iterative gradient descent. This overcomes the difficulty of

the autoencoder to reconstruct high-frequency information and

improves performance on a range of autoencoder variants.

Since their VAE variant performs the best, this is the one we

choose for comparison.

IV. METHODOLOGY

Ultimately, our task is to find an anomaly map: a tensor

the same shape as the input whose elements measure

the abnormality of each pixel component. When using a

conventional or denoising autoencoder, this task is approached

indirectly by arranging for the model to first output a

reconstruction of the input [16]. The difference between the

input and its reconstruction is then used to create the anomaly

map. In our proposed method, the anomaly map is the direct

output of the model. Assuming that most pixels are normal

on the basis that anomalies are rare, our model aims to

output near-zero values in the majority of cases. By contrast,

conventional and denoising autoencoders need to output a

detailed image accurately with all image features exactly

aligned.

An overview of our approach is shown in Figure 1. During

training, an input tile I is intentionally corrupted with random

noise, resulting in the noised input In. The encoder-decoder

architecture transforms In directly into the anomaly map A,

which may be thought of as the per-pixel adjustment required

to repair the noise. To tune the architecture towards producing

better anomaly maps A, we compare the repaired image

I ′ = In + A with the original, clean input image I . This

comparison is performed by extracting features from both I

and I ′ using the VGG-11 network [23] and taking L2 distance

between these. The images I and I ′ are normalised according

to the requirements of the pretrained VGG-11 network before

undertaking this comparison. During testing, we do not add

noise to the input tiles and the values in A are treated as

the pixel-shifts required to repair any naturally occurring

anomalies. Different to other methods, there is no need to form

the reconstructed image I ′ during testing, since the anomaly

map A is produced earlier in the pipeline.

The following subsections describe our approach in detail.

They address the preprocessing (IV-A), Noising Filter Bank

(IV-B), encoder-decoder architecture (IV-C), output activation

function (IV-D), loss calculation (IV-E), training procedure

(IV-F) and testing procedure (IV-G).

A. Preprocessing and Normalisation

Our architecture expects input image tiles whose values are

normalised to the range [−1..1] and whose dimensions are

65×65 pixels. These tiles are obtained via different methods

in the training phase (Section IV-F) and testing phase (Section

IV-G). All dataset images are resized to 256×256 before

training and testing.

B. The Noising Filter Bank

Each training tile I is intentionally corrupted using a noising

algorithm randomly selected from a collection of algorithms

that we refer to as the Noising Filter Bank. This results in

the noised training tile In in Figure 1. The bank includes

salt, pepper, salt and pepper, Gaussian blur, Gaussian noise,

rectangle, line, ellipse arc, shading, erosion, dilation and none.

If the none algorithm is chosen for a particular image, then

that image is left unaltered. Each of the remaining algorithms



Conv Max Pool Conv Transpose ReLU Leaky ReLU -1

-1

Reflected ReLU

Input Noise Encoder-Decoder

128

256
512

256

128

3
3

33

6565

17
9

17

33
65

+
-1

-13
3

256

128

64

65

8

VGG

Anomaly Map Reconstruction

2

Fig. 1. Our proposed architecture.

begins by creating a noise mask that defines which pixels may

be affected by the algorithm, thus protecting the rest of the

pixels from corruption.

In the case of the line and ellipse arc algorithms, the noise

mask is formed by using drawing commands. All position

parameters are drawn from a uniform distribution within the

area of the image. Thickness parameters, measured in pixels,

are random integers in the range [1..6]. Major and minor axes

are random integers in the range [1..30]. Angles and angle

ranges are random floats in the range [0..360].
In the case of the remaining algorithms, the noise mask is a

rectangular region of randomised width and height inside the

area of the image.

Noise is then applied to the pixels that are activated in the

mask as follows. For the salt and pepper algorithms, pixels

are changed to 1.0 or −1.0 with a probability drawn from the

range [0.0..0.5]. For the Gaussian blur algorithm, a new image

is formed by blurring the original image with a random kernel

and sigma. Pixels from the blurred image are then copied to

the original image according to the noise mask. Each axis

of the kernel is a random odd integer in the range [3..15],
while each axis of the sigma is a random float in the range

[1.0..100.0]. For the Gaussian noise algorithm, Gaussian noise

is added to the masked pixels, where the mean of the noise is

zero, and the standard deviation is a random float in the range

[0.3..0.6]. For the rectangle, line and ellipse arc algorithms,

the masked pixels are changed to a randomly chosen colour.

For the shading algorithm, a random float is drawn from the

range [−0.5..0.5] and added to the masked pixels. Erosion and

dilation both use a circular kernel whose size is an odd integer

in the range [1..7] with an iteration count in the range [1..2].
For all algorithms, the resulting image is clamped to the

range [−1.0..1.0]. If the original input image is grey-scale, as

is the case for the grid dataset, then any randomly selected

colours are constrained to be gray-scale despite the use of a

multi-channel input.

C. The Encoder-Decoder Architecture

The encoder-decoder architecture is comprised of three

convolutional layers followed by three convolutional transpose

layers. Each layer has a kernel size of three, a stride of two

and padding of one unit thickness on every side. The first

convolutional layer has 128 feature maps and this number

doubles at each additional convolutional layer and halves at

each convolutional transpose layer as in DCGAN [24]. The

number of output feature maps is equal to the number of

channels in the input. A Leaky ReLU activation function with

a slope of 0.01 is applied after each layer except for the final

layer, which is discussed in Section IV-D.

D. Reflected ReLU Activation

Often, a tanh() output activation function is used to squeeze

the output back into the [−1..1] range [7], [24]; however, this

activation function is unsuitable for our architecture because it

prevents the learning of the simplest encoder-decoder function.

Ideally, the network should be able to simply output zeros

wherever the input is normal, thus minimising the amount

of detail expected from the network in the most common

case: that of a pixel being normal. Unfortunately, applying

the tanh() activation would prevent this from happening.

Consider a normal pixel in the noised input In whose value

is 0.5. If the network outputs a zero for this pixel in A, then

when A is added to In it will produce a value of 0.5. This

represents the perfect reconstruction that we would like to find

in I ′, but applying the tanh() at this point would result in a

change in the value. Consequently, the network will need to

learn to output a value in A that will undo the effect of the

tanh() function. Furthermore, the appropriate value to output

would depend on the value of the input, which is the kind

of coupling between input and output that we would like to

avoid. Therefore, we propose the Reflected ReLU function that

is defined as:

RefReLU(x) =











0.01x− 0.99, x ≤ −1.

x, −1 ≤ x ≤ +1.

0.01x+ 0.99, x ≥ +1.

(1)

This activation function leaves the reconstruction pixel

values unchanged when they are in the range [−1..1], while

reducing how far the they deviate from the dynamic range.

This ensures that the range of the input to the VGG-11 network

[23] is closer to the range on which it was trained. Section

VI-E analyses the effect of using this activation function.

A further disadvantage of the tanh() function is that a pixel

may need to be shifted by a magnitude greater than 1.0, and

such values do not lie in the range of the tanh() function.



TileCarpet WoodLeatherGrid
0.8

0.9

1.0

Fig. 2. Box-plot of the AUC results produced by our proposed method on
each of the MVTecAD [2] texture datasets.

E. The Loss Function

We use a perceptual loss similar to that of Johnson et al.

[25]. In our case, features are extracted from both the input

image I and its reconstruction I ′ using a VGG-11 network [23]

pretrained on ImageNet [26]. The L2 distance between these

extracted features forms the perceptual loss as shown in Figure

1. The features are taken from the fourth convolutional layer

after max-pooling and ReLU activation function are applied.

F. The Training Procedure

Before training commences, 80,000 tiles of size 65×65 are

randomly cropped from the resized training dataset images.

The training batch for each iteration is formed by randomly

selecting 64 of these tiles without replacement. This batch of

64 tiles is propagated through the pipeline shown in Figure 1

to produce the loss used to train the encoder-decoder network

via backpropagation. The method of optimisation is the same

as that used in DCGAN [24] i.e. we use the Adam optimiser

[27] with an initial learning rate of 0.0002, β1 = 0.5, and

β2 = 0.999. Training is stopped after 3,500 iterations.

G. The Testing Procedure

Each testing iteration processes a single image from the

resized testing dataset. We extract tiles that measure 65×65

pixels with a stride such that there is approximately 50%

overlap horizontally and vertically with every pixel represented

by at least one tile. These tiles are batched and propagated

through the pipeline depicted in Figure 1 until the anomaly

map A for each tile is produced. No reconstruction is formed,

instead, for each tile we take the absolute value of the

corresponding anomaly map and sum it along its channel

dimension. This yields the anomaly score for each pixel.

Anomaly scores from each tile are composed to form the

per-pixel anomaly scores for the entire test image. Where

multiple tiles share a set of pixels, anomaly score contributions

from each tile are averaged.

V. RESULTS

We test our proposed method on the MVTecAD texture

datasets [2]: carpet, grid, leather, tile and wood. Our model is

trained and tested on each dataset using eight different random

seeds and the AUC results are displayed in the box-plot

presented in Figure 2.

Fig. 3. An example anomaly detection output for each dataset. Left images
show a texture containing a defect with an anomaly segmentation in red.
Right images show a heat-map of the per-pixel anomaly scores output from
the autoencoder. Segmentations are produced by setting a threshold on the
heat-map.

Table I compares the mean of these results with those

achieved by state-of-the-art methods. In addition to out-

performing these methods, some of the closest performing

methods employ the use of more complex GAN architectures

[11] or VAE [8], [10].

TABLE I
ANOMALY DETECTION PERFORMANCE (AUC)

Method Carpet Grid Leather Tile Wood Mean

AE (L2) [5] 0.59 0.90 0.75 0.51 0.73 0.70

AE (SSIM) [5] 0.87 0.94 0.78 0.59 0.73 0.78

AnoGAN [6] 0.54 0.58 0.64 0.50 0.62 0.58

CNN Feats. [3] 0.72 0.59 0.87 0.93 0.91 0.80

GMM [4] 0.88 0.72 0.97 0.41 0.41 0.68

GANomaly [7] 0.70 0.71 0.84 0.79 0.83 0.78

VEVAE [8] 0.78 0.73 0.95 0.80 0.77 0.81

SMAI [9] 0.88 0.97 0.86 0.62 0.80 0.83

VAEgrad [10] 0.74 0.96 0.93 0.65 0.84 0.82

P-Net [11] 0.57 0.98 0.89 0.97 0.98 0.88

FCDD [12] 0.96 0.91 0.98 0.91 0.88 0.93

Ours 0.93 0.95 0.98 0.98 0.95 0.96

The key advantage of our method is that it is able to squeeze

anomaly scores for normal pixels close to zero, resulting

in anomaly segmentations that are incredibly clean. This is

apparent in the examples shown in Figure 3, where normal

regions are displayed in a near-constant white indicative

of a low anomaly score. This is achieved without any

post-processing of the anomaly maps.

Our proposed method is also sensitive to very fine anomalies

that are not labelled in the ground truth. Two examples of

subtle anomaly detection can be seen in the bottom example

of Figure 3, which depicts an example from the tile dataset



TileCarpet WoodLeatherGrid
0.5

0.6

0.7

0.8

0.9

1.0
Without Resize

Fig. 4. AUC results achieved by our proposed method when the images are
not resized before training and testing. The dashed lines represent the mean
performance given in Table I when all dataset images are resized to 256×256.

that contains two small blemishes above the main defect to

the left and right.

VI. ANALYSIS

The following subsections consist of ablation studies and

investigations into aspects of our proposed method. Where

box-plots are displayed, we overlay our mean results from

Table I as dashed lines, providing a baseline for comparison.

A. Effect of Resizing

One of the preprocessing steps in our method is to resize

all dataset images to 256×256 (Section IV-A). This improves

results, especially for the carpet and grid datasets, as shown

in Figure 4.

Figures 5, 6 and 7 show full-size detection results on the

leather, tile and wood datasets respectively including any

typical failure cases if any. The anomaly segmentations are

very precise; consequently, they may only be sparsely filled

due to the presence of normal pixels within the anomalous

region. In such cases, the anomaly map resembles a cast of

the anomaly rather than a solid segmentation as depicted in

the ground truth. This is particularly evident in the top-left

example in Figure 7 and the bottom two examples in Figure

6. At full-size we also observe that anomaly segmentations

sometimes do not cover the entire anomalous region as can be

seen in the bottom-left example of Figure 5. In addition, there

are a total of two failure cases across the three datasets, namely

the presence of glue on tile (top-right example of Figure 6)

and the presence of liquid on wood (bottom-right example of

Figure 7). Sparsely filled and low coverage detections may be

relieved in part by post-processing operations such as opening

and closing.

B. Ablation of Noising Algorithms

Our proposed method entails corrupting the input training

tiles using noising algorithms randomly selected from the

Fig. 5. Examples of anomaly detection results on the leather dataset at full
resolution.

Fig. 6. Examples of anomaly detection results on the tile dataset at full
resolution. The top-right example shows the failure case of contamination
with glue.

Fig. 7. Examples of anomaly detection results on the wood dataset at full
resolution. The bottom-right example shows the failure case of liquid on the
surface.

Noising Filter Bank (Section IV-B). This raises the question of

how the method would perform when using different subsets

of the Noising Filter Bank. Different subsets are produced by

splitting the algorithms into five families: opaque, consisting

of rectangle, line and ellipse arc; transparent, consisting of

shading and Gaussian blur; speckle, consisting of salt and

pepper noises; distribution, consisting of Gaussian noise; and

morphological, consisting of erosion and dilation. Positive and

negative noise ablation tests are performed using these families

and their results displayed in Figures 8 and 9 respectively.

During a positive noise ablation study, a single family is tested

in isolation, while during a negative noise ablation study, a

single family is excluded.



TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid
0.5

0.6

0.7

0.8

0.9

1.0

Opaque Transparent Speckle Distribution Morphological

Positive Noise Ablation

Fig. 8. AUC results achieved by our proposed method when the Noising Filter Bank consists of only a single family of noising algorithms. The dashed lines
represent the mean performance given in Table I when all noising algorithms are used.

TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid
0.5

0.6

0.7

0.8

0.9

1.0

Opaque Transparent Speckle Distribution Morphological

Negative Noise Ablation

Fig. 9. AUC results achieved by our proposed method when the Noising Filter Bank consists of all families of noising algorithms except one. The dashed
lines represent the mean performance given in Table I when all noising algorithms are used.

These results show the benefit of increasing the variety

of noises; no single kind of noise is responsible for good

performance.

C. Generalisation of the Noising Filter Bank

Since the Noising Filter Bank consists of a constant set of

hand-crafted algorithms, it might be the case that they happen

to fit the distribution of anomalies seen in the MVTecAD

dataset particularly well. Therefore, we test our method on

two further datasets: the DAGM-2007 dataset [28] and the

Leaf dataset [29].

The DAGM-2007 dataset [28] is an algorithmically

generated dataset of artificial textures with defects. Example

anomaly detections on this dataset are shown in Figure 10.

Unfortunately, the ground-truth is too coarse to allow for

adequate quantitative performance measure at the pixel-level;

however, qualitatively we observe the same strong anomaly

signatures against near-constant backdrops of low scoring

normal pixels. The detections are consistent across the dataset,

even for very subtle examples such as the middle-left example

of Figure 10.

The Leaf dataset [29] consists of approximately 50,000

images of fourteen different species of leaf. A subset of these

images are of leaves showing signs of disease, while the

remaining images are of healthy leaves. We train our method

on the healthy subset of images and then subsequently attempt

to segment the diseased pixels in the diseased subset. No

ground-truth is provided with this dataset but qualitatively,

anomaly detection performance is strong overall as shown in

the examples provided in Figure 11 that are representative of

the majority of cases. In a minority of cases, our method fails

to produce good anomaly segmentations on this dataset as

shown in Figure 12.



Fig. 10. Examples of anomaly detection results on the DAGM-2007 dataset
[28]. Anomaly detection overlay has been omitted for clarity.

Fig. 11. Examples of anomaly detection results on the Leaf dataset. Left
images show an example leaf that contains a disease, middle images show
the same images with anomaly detection overlayed in red, and the right images
show the anomaly heat map.

Fig. 12. Examples of poor anomaly segmentations in the Leaf dataset.

D. Resistance to False-Positives

We investigate the key advantage of our proposed method:

that anomaly scores for normal pixels are kept very low,

providing a quiet backdrop with minimal noise against which

anomalies may be identified clearly. Figure 13 shows a

histogram of anomaly scores assigned to all normal pixels

in the leather dataset. Our proposed method (shown in blue)

keeps almost all anomaly scores below 0.03. By contrast, when

our method is modified to behave like a regular denoising

autoencoder (shown in orange), anomaly scores fill a much

wider spread of values centred approximately on 0.13. The

difference is that the regular denoising autoencoder needs

to output a reconstruction of each input tile, which is a

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27

Negative Pixel Anomaly Score

0

1

2

3

4

5

F
re

q
u
e
n
c
y
 ×

1
0

7

1e7

AE outputs reconstruction

AE outputs anomaly map

Fig. 13. Histogram of anomaly scores assigned to negative (normal) pixels
across the entire leather dataset. The blue area shows the scores assigned
by the unmodified encoder-decoder architecture that outputs anomaly maps
directly. The orange area shows the scores assigned when the encoder-decoder
training is modified to mimic the behaviour of a regular denoising autoencoder.
In this case, the architecture outputs reconstructions.

Fig. 14. Examples of anomaly maps generated for a sample frame from the
leather dataset. Left: The encoder-decoder architecture outputs the anomaly
map directly. Right: The encoder-decoder architecture outputs a reconstruction
of the input.

more error-prone task than simply measuring deviations from

normality. Consequently, our approach creates anomaly maps

that are very quiet in normal areas of the image, as shown in

Figure 14.

E. Effect of the Reflected ReLU

Often, a tanh() output activation is used in encoder-decoder

architectures similar to ours [7], [24]; however, we replace

this with the proposed Reflected ReLU function (Section

IV-D). Figure 15 shows the effect of using the original tanh()
activation function and no activation function. The results

support the hypothesis that the new Reflected ReLU function

is superior for use in our proposed method, likely because it

simplifies the task by allowing the autoencoder to output zeros

for normal pixels. Compared to using no output activation

function, the benefit of using the Reflected ReLU function

is less significant.

VII. CONCLUSION AND FUTURE WORK

We introduce a new autoencoder based architecture for

textural anomaly detection. Rather than presenting training

examples directly to the autoencoder, we first corrupt them

with random noise in a way comparable to DAE. In contrast

with DAE, we use a bank of noising algorithms to increase

the variability of the noise. Furthermore, our autoencoder does

not directly output a noise-free reconstruction of the input,

rather, it predicts the negative of the noise, which may be



TileCarpet WoodLeatherGrid TileCarpet WoodLeatherGrid
0.5

0.6

0.7

0.8

0.9

1.0

Tanh None

Without Reflected ReLU

Fig. 15. AUC metrics produced by our proposed method when our Reflected
ReLU activation function is either replaced with the tanh() function or
removed. The dashed lines represent the mean performance when using the
Reflected ReLU function as shown in Table I.

used directly as an anomaly map during the testing phase

when no artificial noise is added. In combination with the

new Reflected ReLU output activation function, this allows

the autoencoder to output a near-zero value for each normal

pixel, which facilitates the pass-through of high-frequency

information during the training-phase. Our proposed method is

capable of achieving an average AUC score of 96% across the

MVTecAD texture classes [2], where the best state-of-the-art

method achieves 93%.

Future work should consider the definition and static

nature of the Noising Filter Bank. Currently, this needs to

be hard-coded without a set of principles for formulating

the noising algorithms. The generation of noise within an

adversarial framework may address this.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from an

EPSRC Studentship (1966980 / EP/N509462/1) and Intel, UK

& Groningen, NL.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad–a
comprehensive real-world dataset for unsupervised anomaly detection,”
in Conference on Computer Vision and Pattern Recognition, 2019, pp.
9592–9600.

[3] P. Napoletano, F. Piccoli, and R. Schettini, “Anomaly detection in
nanofibrous materials by CNN-based self-similarity,” Sensors, vol. 18,
no. 1, p. 209, 2018.

[4] T. Böttger and M. Ulrich, “Real-time texture error detection on textured
surfaces with compressed sensing,” Pattern Recognition and Image

Analysis, vol. 26, no. 1, pp. 88–94, 2016.
[5] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger,

“Improving unsupervised defect segmentation by applying structural
similarity to autoencoders,” International Conference on Computer

Vision Theory and Applications, pp. 372–380, 2019.

[6] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-
Erfurth, “f-anogan: Fast unsupervised anomaly detection with generative
adversarial networks,” Medical Image Analysis, vol. 54, pp. 30–44, 2019.

[7] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly:
Semi-supervised anomaly detection via adversarial training,” in Asian

Conference on Computer Vision. Springer, 2018, pp. 622–637.
[8] W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and

O. Camps, “Towards visually explaining variational autoencoders,” in
Computer Vision and Pattern Recognition. IEEE, 2020, pp. 8642–8651.

[9] Z. Li, N. Li, K. Jiang, Z. Ma, X. Wei, X. Hong, and Y. Gong, “Superpixel
masking and inpainting for self-supervised anomaly detection,” in British

Machine Vision Conference. IEEE, 2020, pp. 7–10.
[10] D. Dehaene, O. Frigo, S. Combrexelle, and P. Eline, “Iterative energy-

based projection on a normal data manifold for anomaly localization,”
International Conference on Learning Representations, 2020.

[11] W. Luo, Z. Gu, J. Liu, and S. Gao, “Encoding structure-texture relation
with p-net for anomaly detection in retinal images,” 2020.

[12] P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, and
K.-R. Müller, “Explainable deep one-class classification,” International

Conference on Learning Representations, 2021.
[13] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep autoencoding

models for unsupervised anomaly segmentation in brain mr images,”
in International MICCAI Brainlesion Workshop. Springer, 2018, pp.
161–169.

[14] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[15] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extraction,” in
International Conference on Artificial Neural Networks. Springer, 2011,
pp. 52–59.

[16] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis,
“Learning temporal regularity in video sequences,” in Computer Vision

and Pattern Recognition. IEEE, 2016, pp. 733–742.
[17] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising

auto-encoders as generative models,” in Advances in Neural Information

Processing Systems, 2013, pp. 899–907.
[18] D. Xu, Y. Yan, E. Ricci, and N. Sebe, “Detecting anomalous events

in videos by learning deep representations of appearance and motion,”
Computer Vision and Image Understanding, vol. 156, pp. 117–127,
2017.

[19] H. Song, Z. Jiang, A. Men, and B. Yang, “A hybrid semi-supervised
anomaly detection model for high-dimensional data,” Computational

Intelligence and Neuroscience, vol. 2017, 2017.
[20] H. T. Tran and D. Hogg, “Anomaly detection using a convolutional

winner-take-all autoencoder,” in Proceedings of the British Machine

Vision Conference. British Machine Vision Association, 2017.
[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” Transactions

on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[22] Y. Zeng, J. Fu, H. Chao, and B. Guo, “Learning pyramid-context encoder

network for high-quality image inpainting,” in Conference on Computer

Vision and Pattern Recognition. IEEE, 2019, pp. 1486–1494.
[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” International Conference on Learning

Representations, 2015.
[24] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,”
International Conference on Learning Representations, 2016.

[25] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in European Conference on

Computer Vision. Springer, 2016, pp. 694–711.
[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Computer Vision and

Pattern Recognition. IEEE, 2009, pp. 248–255.
[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

International Conference on Learning Representations, 2015.
[28] M. Wieler and T. Hahn, “Weakly supervised learning for industrial

optical inspection,” in DAGM Symposium, 2007.
[29] D. Hughes, M. Salathé et al., “An open access repository of images on

plant health to enable the development of mobile disease diagnostics,”
arXiv preprint arXiv:1511.08060, 2015.


