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On Using Deep Convolutional Neural Network
Architectures for Object Classification and

Detection within X-ray Baggage Security Imagery
Samet Akcay*, Mikolaj E. Kundegorski, Chris G. Willcocks, and Toby P. Breckon

Abstract—We consider the use of deep Convolutional Neural
Networks (CNN) with transfer learning for the image classifica-
tion and detection problems posed within the context of X-ray
baggage security imagery. The use of the CNN approach requires
large amounts of data to facilitate a complex end-to-end feature
extraction and classification process. Within the context of X-
ray security screening, limited availability of object of interest
data examples can thus pose a problem. To overcome this issue,
we employ a transfer learning paradigm such that a pre-trained
CNN, primarily trained for generalized image classification tasks
where sufficient training data exists, can be optimized explicitly
as a later secondary process towards this application domain.
To provide a consistent feature-space comparison between this
approach and traditional feature space representations, we also
train Support Vector Machine (SVM) classifier on CNN fea-
tures. We empirically show that fine-tuned CNN features yield
superior performance to conventional hand-crafted features on
object classification tasks within this context. Overall we achieve
0.994 accuracy based on AlexNet features trained with Support
Vector Machine (SVM) classifier. In addition to classification, we
also explore the applicability of multiple CNN driven detection
paradigms such as sliding window based CNN (SW-CNN), Faster
RCNN (F-RCNN), Region-based Fully Convolutional Networks
(R-FCN) and YOLOv2. We train numerous networks tackling
both single and multiple detections over SW-CNN/F-RCNN/R-
FCN/YOLOv2 variants. YOLOv2, Faster-RCNN, and R-FCN
provide superior results to the more traditional SW-CNN ap-
proaches. With the use of YOLOv2, using input images of size
544×544, we achieve 0.885 mean average precision (mAP) for
a six-class object detection problem. The same approach with
an input of size 416×416 yields 0.974 mAP for the two-class
firearm detection problem and requires approximately 100ms
per image. Overall we illustrate the comparative performance of
these techniques and show that object localization strategies cope
well with cluttered X-ray security imagery where classification
techniques fail.

Index Terms—Deep convolutional neural networks, transfer
learning, image classification, detection, X-ray baggage security

I. INTRODUCTION

XRAY baggage security screening is widely used to main-
tain aviation and transport security and poses a significant

image-based screening task for human operators reviewing
compact, cluttered and highly varying baggage contents within
limited time-scales. The increased passenger throughput, in
the global travel network, and the increased focus on broader
aspects of extended border security (e.g., freight, shipping,
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postal) results in a challenging and timely automated image
classification task.
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Fig. 1: Exemplar X-ray baggage imagery multiple objects.

Previous work within this context is primarily based on the
bag of visual words model (BoVW) [1]–[5] although there is
some limited research using other techniques such as sparse
representations [6]. Convolutional neural networks (CNN), a
state-of-the-art paradigm for contemporary computer vision
problems, were introduced into the field of X-ray baggage
imagery by [7], comparing CNN to a BoVW approach with
conventional hand-crafted features trained with a Support
Vector Machine (SVM) classifier. Following the work of [7],
[8] also studies X-ray baggage object classification with CNN
similarly comparing it against traditional classifiers.

Motivated by [4], [7], [8], we conduct an extensive set of
experiments to evaluate the strength of CNN features and tra-
ditional hand-crafted features (SIFT, SURF, FAST, KAZE [4]).
As with [7], we perform layer freezing by fixing parameters
from the source domain without any further optimization to
observe how fixing the layer parameters at varying points in
the network influences the overall performance of the transfer
learning based tuning of the end-to-end CNN. Furthermore,
in contrast to [7], [8] comparing end-to-end CNN classifica-
tion with traditional feature-driven pipelines, we additionally
present results whereby we extract the output of the last layer
of a given CNN (fc7 of AlexNet [9]) as a feature map itself.
We subsequently train an SVM classifier, generally used as
the final classification stage of feature-driven approaches [1]–
[5], to provide a consistent feature-space comparison between
both learned (CNN) and traditional feature representations.

In addition to the proposed classification scheme, we ex-
plore object detection within this problem domain by inves-
tigating both the use of a sliding window paradigm (akin
to [5], [10]) and evaluate contemporary approaches to learn
efficient object localization via R-CNN [11], R-FCN [12] and
YOLOv2 [13] approaches. As shown in previous work [7],
[8] the challenging and cluttered nature of object detection
in X-ray security imagery often poses additional challenges
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for established contemporary classification and detection ap-
proaches, such as RCNN/R-FCN [11], [12].

The main contributions of this paper are: (a) the exhaus-
tive evaluation of classification architectures of [9], [14]–
[16] against prior work in the field from [1], [2], [4], [6],
[17], (b) the feature-space comparison of the end-to-end CNN
classification results of [7], [8] against the final stage SVM
classification on the extracted CNN features, (c) the compari-
son of the region based object detection/localization strategies
of [11], [12] against the prior strategies proposed in [10], [18].
Contrasting performance results are obtained against the prior
published studies of [4], [7] over a comprehensive dataset
of 11, 627 examples making this the largest combined X-
ray object detection and classification study in the literature
to date. Moreover, the evaluation is strengthened further by
using UK government evaluation dataset [19] (available upon
request from UK Home Office Centre for Applied Science
and Technology (CAST)). Overall, we identify classification
approaches and detection strategies that outperform the prior
work of [5], [7], [10].

II. RELATED WORK

Aviation security screening systems are of interest and have
been studied for decades [20]. Computer Aided Screening
(CAS) performs automated threat detection in the generalized
sense, however this largely remains an unsolved problem.
Previous work [21], [22] has focused on image enhancement
[23]–[25], segmentation [26], [27], classification [1], [2], [4],
[6], [17] or detection [5], [10], [28], [29] tasks in order
to further investigate the real time applicability of CAS to
automatize aviation security screening. For a detailed overview
the reader is directed to Rodgers et al. [22] and Mouton et al.
[21]. Our focus is based on addressing the object classification
and detection tasks presented in the following sections.
Classification: For the classification of X-ray objects, the
majority of prior work proposes traditional machine learning
approaches based on a Bag-of-Visual-Words (BoVW) feature
representation scheme, using hand-crafted features together
with a classifier such as a Support Vector Machine (SVM)
[1], [2], [4], [6], [17].

The work of [1] considers the concept of BoVW within
X-ray baggage imagery using SVM classification with sev-
eral feature representations (DoG, DoG+SIFT, DoG+Harris)
achieving a performance of 0.7 recall, 0.29 precision, and 0.57
average precision. Turcsany et al. [2] followed a similar ap-
proach and extended the work presented in [1]. Using a BoVW
with SURF descriptors and an SVM classifier, together with
a modified version of codebook generation, yields 0.99 true
positive and 0.04 false positive rates [2]. BoVW approaches
with feature descriptor and SVM classification are also used in
[3] for the classification of single and dual-view X-ray images,
with optimal average precisions achieved for firearms (0.95)
and laptops (0.98). Mery et al. [17] propose a recognition
approach that applies detection to single-view images to find
objects of interest, and then matches these across multiple view
X-ray images yielding 0.96 precision and 0.93 recall for 120
objects. A BoVW approach is further employed in [6] where

a dictionary is formed for each class that consists of feature
descriptors of randomly cropped image patches. Performance
of the model is evaluated by fitting a sparse representation
classification to the extracted feature descriptors of randomly
cropped test patches, and adaptive dictionaries are obtained
from the training stage. The experimental procedure demon-
strates promising results for classification of the patches.

Kundegorski et al. [4] exhaustively explore the use of
various feature point descriptors as visual word variants within
a BoVW model. This is for image classification based threat
detection within baggage security X-ray imagery, using a
FAST-SURF feature detector and descriptor combination giv-
ing a maximal performance with an SVM classification (2
class firearm detection: 94.0% accuracy).

The study of [7] compares a BoVW approach and a CNN
approach, exploring the use of transfer learning by fine-
tuning weights of different layers transferred from another
network trained on a different task. Experiments show that
the CNN outperforms the BoVW method, even when features
are abstractly transferred from another classification problem.
Following the earlier work of [7], [8] exhaustively explores
the use of varying classification approaches within the X-
ray baggage domain using ten different techniques, including
BoVW, sparse representations, and CNN. Experiments show
parallel results with [7], supporting the generalized superiority
of CNN features but without any further consideration of the
initial object detection (localization) problem, or exhaustive
exploration of CNN performance in the broader sense.
Detection: Object classification is a significant task for the
identification (semantic labeling) of particular objects against
others, i.e., being a threat or non-threat. However, a vital
remaining task within this problem domain is that of detection
in which objects of interest are localized within the overall X-
ray image, commonly denoted with a bounding box or shape
outline. Since detection is a challenging problem, detection
based models within X-ray baggage imagery are significantly
more limited in the literature.

In [28], detection of regions of interest (ROI) within X-ray
images is performed via a geometric model of the object, by
estimating structure from motion. Potential regions obtained
from segmentation step are then tracked based on their sim-
ilarity, achieving 0.943 true positive and 0.056 false positive
rates on a small, uncluttered dataset.

Franzel et al. [10] propose a sliding window detection
approach with the use of a linear SVM classifier and histogram
of oriented gradients (HOG) [31]. As HOG is not fully rota-
tionally invariant, they supplement their approach by detection
of varying orientations. As a next step, called multi-view
integration, detections from single view X-ray images, taken
from multiple viewpoints in a modern X-ray scanner machine,
are fused to avoid false detections and find the intersection of
the true detections. Multi-view detection is shown to provide
superior detection performance to single-view detection for
handguns (mAP: 0.645). Similarly, [5] explores object detec-
tion in X-ray baggage imagery by evaluating various hand-
crafted feature detector and descriptor combinations with the
use of a branch and bound algorithm and structural SVM
classifier (mAP: 0.881 for 6400 images of handguns, laptops
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Fig. 2: Gradient-based class activation map (Grad-CAM [30]) of VGG16 [15] trained on X-ray data. The first column of each convolution
box demonstrates grayscale Grad-CAM, while the second column is Grad-CAM heatmap on an input image.

and glass bottles).
A related body of work also targets the use of BoVW tech-

niques within the highly related task object detection within
3D computed tomography (CT) baggage security imagery
[32]–[34]. An extensive review is presented in [21], [22].

By contrast to the predominance of BoVW techniques [1],
[2], [4], [6], [17], and the limited evaluation of recent devel-
opments from the CNN literature [7], [8] within this problem
domain, we explicitly evaluate multiple CNN classification
architectures [9], [14]–[16] across multiple contemporary de-
tection (object localization) paradigms. Uniquely, we consider
a side-by-side comparison of multiple CNN variants and
detection paradigms against traditional BoVW for reference
across varied and challenging X-ray security images datasets,
which are highly representative of operational conditions.

III. CLASSIFICATION

Automated threat screening task in X-ray baggage imagery
can be considered as a classical image classification prob-
lem. Here we address this task using convolutional neural
networks and transfer learning approaches based on the prior
work of [9], [15], [16], [35]–[37], and expanding the earlier
preliminary studies of [7], [8]. To these ends, we initially
outline a brief generalized background for convolutional neural
networks and transfer learning, and explain our approach to
applying these techniques to object classification within X-ray
baggage images.

A. Convolutional Neural Networks

Deep convolutional neural networks have been widely used
in many challenging computer vision tasks such as image clas-
sification [16], object detection [11]–[13] and segmentation
[38]

Krizhevsky et.al. (AlexNet) [9] propose a network (ie.,
similar to [39] but deeper and wider, having 5 conv layers
with 11× 11 receptive filters and 3 fc layers, and 60 million
parameters in total). This high-level of parametrization, and
hence representational capacity, make the network suscepti-
ble to over-fitting in the traditional machine learning sense.
The use of dropout, whereby hidden neurons are randomly

removed during the training process, is introduced to avoid
over-fitting such that performance dependence on individual
network elements is reduced in favor of cumulative error
reduction and representational responsibility for the problem
space. In addition to dropout which increases the robustness
of the networks to over-fitting, ReLu [9] is another novel
approach in this work introduced as an activation function for
non-linearity. By following the success of this work, Zeiler and
Fergus [40] design a similar architecture with smaller receptive
fields (ZFNet). Furthermore, the work also introduces a new
approach for the visualization of feature representations within
networks [40].

Inspired by the favorable outcome of [9] and [40], network
width is thoroughly explored in [14] via the comparison
of three networks with varying width. By following this,
Simonyan and Zisserman (VGG) [15] study the importance
of network depth on classification accuracy by stacking con-
volutional layers with small 3 × 3 receptive fields with a
stride of 1. Not only does the use of small receptive filters
increase non-linearity but also decrease the total number of
parameters of the network. It is empirically shown that stack
of 3 × 3 convolutional filters within a network with varying
depth between 11 to 19 layers can significantly improve the
state-of-the-art.

He et al. (ResNet) [16] propose a simple yet powerful
network by following the work in [41]. Input is first fed into
two stacked conv layers, then is added to the output of the
conv layers before non-linearity is applied. This approach is
used up to 34 layers. For deeper networks such as 50, 101, 152,
filter factorization is employed such that conv layers are
stacked using 1× 1, 3× 3 and 1× 1 filters (bottleneck layer).
The proposed approach significantly reduces the number of
parameters needed for a deep network and outperforms the
previous state-of-the-art.

B. Transfer Learning

Modern CNN architectures such as [9], [15], [16], [37] are
trained on huge datasets such as ImageNet [42] which contains
approximately a million of data samples and 1000 distinct
class labels. However, the limited applicability of such training
and parameter optimization techniques to problems where such
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Fig. 3: Transfer learning pipeline. (A) shows classification pipeline for a source task, while (B) is a target task, initialized by the parameters
learned in the source task.

large datasets are not available gives rise to the concept of
transfer learning [35]. The work of [36] illustrated that each
hidden layer in a CNN has distinct feature representation
related characteristics among of which the lower layers provide
general feature extraction capabilities (akin to Gabor filters and
alike), while higher layers carry information that is increas-
ingly more specific to the original classification task. Figure
2, for instance, demonstrates Gradient-based class activation
map (Grad-CAM [30]) of VGG16 [15] for an example X-
ray classification object. Lower layers - i.e. conv1−2 and
conv2−2, behave as edge detectors, while higher layers like
conv4−3 and conv5−3 provides more specific representations
belonging to the input image. This finding facilitates the
verbatim re-use of the generalized feature extraction and
representation of the lower layers in a CNN, while higher
layers are fine-tuned towards secondary problem domains with
related characteristics to the original. Using this paradigm,
as demonstrated in Figure 3, we can leverage the a priori
CNN parametrization of an existing fully trained network on
a generic 1000+ object class problem [42] (Figure 3A), as a
starting point for optimization towards to the specific problem
domain of limited object class detection within X-ray images
(Figure 3B). Instead of designing a new CNN with random
weight initialization, we instead adopt a pre-trained CNN, pre-
optimized for generalized object recognition, and fine-tune its
weights towards our specific classification domain.

C. Application to X-ray Security Imagery

To investigate the applicability of convolutional neural net-
works in object classification in X-ray baggage imagery, we
address two specific target problems:- a) binary classification
problem that performs firearm detection (i.e., gun vs. no-
gun) akin to that of the prior work of [4] to compare CNN
features to conventional hand crafted attributes; b) a multi-
class X-ray object classification problem (6 classes: firearm,
firearm-components, knives, ceramic knives, camera and lap-
top), which further investigates the performance of CNN for
the classification of multiple X-ray objects. The following
subsection describes the datasets we use in our experiments.

1) Datasets: To perform classification tasks, we use four
types of datasets described below:

A

B

C
E

D

F

Fig. 4: Exemplar X-ray baggage image with extracted data set regions
including background samples. Type of baggage objects in the dataset
is as follows: (A) Firearm Component, (B) Ceramic Knife, (C)
Laptop, (D) Camera , (E) Firearm , (F) Knife

Dbp2: Our data-set (11, 627 X-ray images) are constructed
using single conventional X-ray imagery with associated false
color materials mapping from dual-energy [21]. To generate
a dataset for firearm detection, we manually crop baggage
objects, and label each accordingly (e.g., Figure 4 ) - on the
assumption an in-service detection solution would perform
scanning window search through the whole baggage image.
In addition to manual cropping, we also generate a set of
negative images by randomly selecting 256× 256 fixed-sized
overlapping image patches from a large corpus of baggage
images that do not contain any target objects. Following these
approaches, our evaluation datasets consist of 19, 398 X-ray
sample patches for a classical two-class firearms detection
problem (positive class: 3, 179 firearm images / 1, 176 images
of firearm components; negative class: 476 images of cameras,
2, 750 knives, 1, 561 ceramic knives, 995 laptops and 9, 261
cropped images of background clutter)

Dbp6: For the multiple class problem, we separate firearms
and firearm sub-components into two distinct classes to make
the problem even more challenging. Likewise, regular and
ceramic knives are considered as two different class objects,
which overall we have a 6-class problem for the multi-class
task (i.e., each patch being either one of the six object labels).

In addition to these datasets, we also use UK government
evaluation dataset [19], which is available upon request from
UK Home Office Centre for Applied Science and Technology
(CAST). This dataset comprises of both expertly concealed
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firearm (threat) items and operational benign (non-threat)
imagery from commercial X-ray security screening operations
on the UK (baggage/parcels). From this dataset, we define two
evaluation problems based on the provided annotation for the
presence of firearms threat items.
Full Firearm vs. Operational Benign - (FFOB): comprising
4, 680 firearm threat and 5,000 non-threat images, and is
denoted as FFOB.
Firearm Parts vs. Operational Benign - (FPOB): contains
8, 770 firearm and parts threat and 5, 000 non-threat images
(denoted FPOB, comprising of annotations as any of {bolt
carrier assembly, Pump action, Set, Shotgun, Sub-Machine-
Gun}).

We split the datasets into training (60%), validation (20%)
and test sets (20%) such that each split has similar class
distribution but unseen test set contains somewhat challenging
samples never trained before. Besides, we also weight the data
when sampling to cope with class imbalances. We also perform
random flipping, random cropping, and rotation to each sample
to augment the datasets.

2) Classification: Using transfer learning paradigm ex-
plained in Section III-B, this work leverages the a priori
CNN parametrization of an existing fully trained network, on
a generic 1000 object class problem [42], as a starting point
for optimization towards another problem domain of limited
object class detection within X-ray images.

For the binary classification problem, we specifically make
use of the CNN configuration designed by Krizhevsky et al.
[9], having 5 convolutional layers (conv), 3 fully-connected
layers (fc), and trained on the ImageNet dataset on a 1000
class image classification problem, denoted as AlexNet [9].

The first step is to fine tune all of the conv and fc
layers of the network via transfer learning on the training set
of the target classification problem. In addition to this, we
also perform layer freezing, meaning that instead of updating
layer parameters for our task, we use the original unmodified
weights from the initial trained CNN parametrization of [9].
This allows us to observe how fine-tuning each layer impacts
the overall performance.

Also, having fine-tuned the parameters via this transfer
learning approach, we extract the features of the last fully
connected layer (fc7) to train on an SVM classifier. This
allows us to additionally compare the internal feature space
representation of the CNN model to alternative more tradi-
tional (handcrafted) BoVW features as used in prior work [4].

Evaluation of our proposed approach is performed against
the prior SVM-driven work of Kundegorski et. al. [4] within
a BoVW framework. SVM are trained using Radial Basis
Function (RBF) kernel {SVMRBF } with a grid search over
kernel parameter, γ = 2x : x ∈ {−15, 3}, and model fitting
cost, c = 2x : x ∈ {5, 15}, using k-fold cross validation
(k = 5) with F-score optimization (being more representative
then accuracy for unbalanced datasets). The results for the
best performing parameter set are reported for each feature
configuration.

The second set of experiments is the classification of
multiple baggage objects, a more complex six class object
problem. Here the lesser performing SVM with handcrafted

features are not considered (Table I), in favor of the CNN
approach. Instead, we fine-tune AlexNet [9], VGG [15] and
ResNet [16], each of which are top performing entries of
ImageNet [42] competition. By doing so, we aim to evaluate
the feasibility of CNN for this problem domain further.

To update the parameters of all the networks during training,
we use cross-entropy for the loss function, and utilize Adam
[44] optimizer with a learning rate of 10−3, and a weight decay
of 0.005 since we observe that it achieves superior accuracy
to SGD and RMS for this task. Our stopping criterion is to
terminate optimization where validation starts to reduce, while
training accuracy continues to improve. This fork between
training and validation performance usually takes 30 epochs
for this task.

D. Evaluation

The performance is evaluated by the comparison of True
Positive Rate (TP) (%), False Positive Rate (FP) (%) together
with Precision (P), Accuracy (A) and F-score (F) (harmonic
mean of precision and true positive rate).

Results for the two class problem is given in Table I,
which is divided into four sections: - first section lists the
performance of the CNN approach, notated as AlexNetab

,
meaning that the network is fine-tuned from layer a to layer
b, while the rest of the layers are frozen (Table I, top). This
means, for instance, AlexNet4−8 is trained by fine-tuning
the layers {4, 5, 6, 7, 8} and freezing the layers {1, 2, 3} (i.e.
remain unchanged from the pre-trained model of [9]). The
second section has the results of an SVM classifier trained
on the output of the last layer of CNN (Table I, middle
upper). Similar to the first section, we again perform layer
freezing here for a consistent comparison of CNN features and
BoVW features. The third section shows fine tuning results
based on contemporary end to end CNN architectures (VGGM
[14], VGG16 [15], ResNet18 [16], ResNet50 [16], ResNet101
[16], Table I, middle lower). The last section lists the best
performing BoVW feature detector/descriptor variants trained
with SVM in the work of [4] (Table I, bottom).

Table I shows the performance results of firearm detection.
We see that true and false positives have a general trend to
decrease as the number of fine-tuned layers reduces. Likewise,
freezing lower layers reduces the accuracy of the models.

Training an SVM classifier on CNN features with layer
freezing yields relatively better performance than the standard
end to end CNN results. Here, We see a performance pattern
such that fine-tuning more layers has a positive impact on the
overall performance. For instance, SVM trained on fully fine-
tuned CNN has the highest performance on all of the metrics,
outperforming the prior work of [4] and [7] (Table I).

For an end to end fine-tuning using contemporary archi-
tectures, we observe the direct proportion of performance
and network complexity. ResNet101 [16], for instance, is the
best performing network among all of the end to end CNN
networks (TableI).

It is also significant to note that the performance of the best
feature detector/descriptor combination of BoVW approach
(FAST/SURF [4]) is worse than any of the CNN features
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Fig. 5: t-SNE [43] visualization of feature maps extracted from the last fc layer of VGG16 [15] fine-tuned for binary (A) and multi-class
(B) problems.
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AlexNet1-8 99.26 4.08 0.741 0.961 0.849
AlexNet2-8 98.53 2.40 0.832 0.983 0.902
AlexNet3-8 96.32 2.19 0.844 0.980 0.900
AlexNet4-8 95.59 2.96 0.790 0.973 0.865
AlexNet5-8 98.16 4.68 0.711 0.961 0.825
AlexNet6-8 96.32 5.15 0.693 0.954 0.806
AlexNet7-8 94.49 3.65 0.754 0.961 0.839
AlexNet8 95.22 4.21 0.733 0.960 0.828

C
N

N
[9

]
+

SV
M
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ee
zi

ng

AlexNet1-8 99.56 1.07 0.997 0.994 0.996
AlexNet2-8 99.30 1.50 0.996 0.991 0.994
AlexNet3-8 99.18 1.93 0.995 0.989 0.993
AlexNet4-8 98.92 1.86 0.995 0.988 0.992
AlexNet5-8 98.80 2.07 0.994 0.986 0.991
AlexNet6-8 98.68 3.00 0.991 0.983 0.983
AlexNet7-8 98.64 4.15 0.989 0.980 0.980
AlexNet8 98.42 5.43 0.985 0.976 0.976

C
N

N
E

nd
to

E
nd

VGGM [14] 98.38 0.36 0.998 0.987 0.980
VGG16 [15] 99.08 1.14 0.997 0.990 0.985
ResNet18 [16] 99.38 1.43 0.996 0.992 0.988
ResNet50 [16] 99.54 1.00 0.998 0.995 0.992
ResNet101 [16] 99.66 1.14 0.997 0.995 0.993

B
oV

W
SV

M
[4

]

SURF/SURF 79.2 3.2 0.88 0.93 0.83
KAZE/KAZE 77.3 3.9 0.85 0.92 0.81
FAST/SURF 83.0 3.3 0.88 0.94 0.85
FAST/SIFT 80.9 4.3 0.85 0.92 0.83
SIFT/SIFT 68.3 4.2 0.83 0.90 0.75

TABLE I: Results of CNN and BoVW on Dbp2 dataset for firearm
detection. AlexNetab denotes that the network is fine tuned from layer
a to layer b.

given in Table I. Further comparison of BoVW+SVM against
CNN+SVM proves the superiority of CNN features to tradi-
tional handcrafted features (Table I).

Table II shows the overall performance of the networks
fine-tuned for multiple class problem. Like Table I, finetuning
the entire network yields the best performance. A conclusion
can be reached from these results that fine-tuning higher level
layers and freezing lower ones have a detrimental impact on
the performance of the CNN model. Similar to Table I, perfor-
mance and network complexity are also directly proportional.
With relatively lower complexity than the rest, AlexNet [9]
has the lowest accuracy of 0.924. ResNet101 [16], on the other
hand, achieves the highest on all metrics (P=96.0% R=96.6%

P R A F

AlexNet1-8 0.911 0.904 0.904 0.906
AlexNet2-8 0.842 0.841 0.833 0.835
AlexNet3-8 0.843 0.841 0.844 0.841
AlexNet4-8 0.841 0.853 0.844 0.846
AlexNet5-8 0.833 0.821 0.823 0.811
AlexNet6-8 0.820 0.810 0.819 0.809
AlexNet7-8 0.774 0.793 0.722 0.761
AlexNet8 0.721 0.742 0.701 0.712

VGGM [14] 0.928 0.932 0.923 0.926
VGG16 [15] 0.931 0.943 0.940 0.936
ResNet18 [16] 0.933 0.943 0.936 0.937
ResNet50 [16] 0.934 0.910 0.923 0.917
ResNet101 [16] 0.936 0.946 0.937 0.938

TABLE II: Statistical evaluation of CNN architectures (AlexNet,
VGG, and ResNet) on Dbp6 dataset for multi-class problem.

TP% FP% P A F

AlexNet [9] 99.830 0.943 0.990 0.994 0.994
VGGM [15] 99.010 0.000 1.000 0.995 0.995
VGG16 [15] 99.831 0.000 1.000 0.999 0.999
ResNet18 [16] 99.472 0.000 1.000 0.997 0.997
ResNet50 [16] 100.00 0.923 0.990 0.995 0.995
ResNet101 [16] 100.00 0.311 0.996 0.998 0.998

TABLE III: Statistical evaluation of varying CNN architectures
(AlexNet, VGG, and ResNet) on FFOB dataset [19].

A=97.5% F=96.1%).
In addition, results are presented on the UK government

evaluation dataset [19] in Tables III and IV . Within Table III
and IV we present results for classification only (following
the approach of Section III-B), where we can see comparable
performance to the earlier results presented in Tables I and II.

TP% FP% P A F

AlexNet [9] 95.088 3.527 0.960 0.958 0.958
VGGM [15] 95.864 0.919 0.990 0.974 0.974
VGG16 [15] 97.238 4.217 0.954 0.965 0.964
ResNet18 [16] 95.725 0.744 0.992 0.975 0.974
ResNet50 [16] 99.411 1.060 0.988 0.991 0.991
ResNet101 [16] 99.608 0.000 1.000 0.998 0.998

TABLE IV: Statistical evaluation of varying CNN architectures
(AlexNet, VGG, and ResNet) on FPOB dataset [19].
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Fig. 6: Confusion matrices for AlexNet [9], VGG16 [15] ResNet-50 [16] fine tuned for multi class problem

Figure 5 depicts the t-SNE [43] visualization of feature
maps of the down-projected internal feature space represen-
tation extracted from VGG16 [15] fine-tuned for binary (A)
and multi-class (B) problems. In both cases, classes are well
separated, showing the capability of CNN features within this
problem domain (Figure 5).

Figure 6 depicts per-class accuracy obtained via the use of
AlexNet [9] and ResNet101 [16], the worst and best performing
networks within this task. We see that laptop and camera
object classes are straightforward to classify. In contrast,
networks have relatively lower classification confidence for
knife, ceramic knife vs. firearm, firearm parts, which obviously
stems from the similarity of the objects.

Limitations: Due to the cluttered nature of the input dataset,
there are certain cases where CNN based classification fails to
classify threats. Figure 7, for instance, demonstrates that CNN
labels these image examples as laptops with high confidence,
as the predominant object signature present in the image
patch, while failing to detect the foreground objects of interest
(yellow highlights, Figure 7). This results in a significant
increase in false negative occurrences (Table II). We consider
this primarily as an object detection problem, and hence
explore the contemporary object detection strategies in the
subsequent part of this study.

laptop 99.15% laptop 96.43% laptop 97.61%

Fig. 7: Exemplar image cases where CNN (only) classification fails to
detect an object in the presence of clutter and other confusing items
of interest (here: background laptop detected, knives/guns missed).

IV. OBJECT DETECTION

From Section III, the approach of CNN based classification
via transfer learning yields promising performance especially
for single and non-occluded X-ray image patches. When it
comes to classifying multiple objects (Figure 7), however,
more sophisticated approaches are needed to perform joint
localization. Here we give a brief introduction to CNN based
object detection algorithms for an exhaustive evaluation within
X-ray baggage domain.

A. Background

Sermanet et al. (OverFeat) [18] uses a sliding window
approach to generate the region proposals, which is then fed
into a convolutional neural network for the classification. The
key idea here is that bounding box regression is performed
with an extra regression layer which shares the weights with
the main network. Subsequent work [45] proposes a detec-
tion algorithm (RCNN), based on three main stages: region
proposal generation, feature extraction, and classification. The
first stage employs an external region proposal generator,
followed by a fine-tuned CNN in the next stage for feature
extraction. The final stage performs classification with an SVM
classifier. Even though it outperforms previous work by a large
margin, this model is not considered to be real-time applicable
due to runtime and memory issues. In contrast, SPPNet
[46] contains variable-sized spatial pooling layer between the
convolutional and fully connected layers, which allows the
network to handle images of arbitrary scales and aspect ratios.
With this design, image representations can be computed once
in SPPNet, which makes the network significantly faster than
RCNN. Like RCNN, however, the network has several separate
stages, which is computationally expensive. Fast RCNN by
Girshick [47] combines feature extraction, classification and
bounding box regression stages by designing a partially end
to end CNN network, significantly outperforming [45], [46]
regarding speed and accuracy. The novelty of the work is
to employ a region of interest pooling layer (RoI) before
fully connected layers (fc) to fix the size of the region
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proposals generated by the region proposal algorithm. These
fixed sized object localization proposals are then classified
via fc layers. In addition to the classification, bounding box
regression is also performed via a multi-task loss function
to localize objects of interests with a bounding rectangle.
The limitation, however, is that the network still needs an
external region proposal algorithm such as selective search
[48]. Inspired by the strong and weak points of [45]–[47],
Ren et al. [11] propose a model, named Faster RCNN (F-
RCNN) performing all the aforementioned stages in an end to
end deep neural network. This approach not only reduces time
complexity and required memory but also significantly boosts
overall performance. Further optimization of this concept by
[12] proposes a fully convolutional detection framework (R-
FCN), which yields faster training and testing performance
with competitive accuracy compared to F-RCNN [11].

In this work, we adapt F-RCNN, R-FCN and YOLOv2
each of which provide a significant boost in accuracy, for use
within an X-ray baggage object detection context, and compare
with previous object detection approaches primarily based on
traditional sliding window detection frameworks [5], [10].

B. Detection Strategies

Within this work, we consider a number of competing con-
temporary detection frameworks and explore their applicability
and performance for generalized object detection in X-ray
baggage imagery.
Sliding Window Based CNN detection consists of two main
stages, one of which is to generate objects of interests, while
the other one performs classification. To create objects of
interest, a fixed sized n × n window slides over the im-
age horizontally and vertically denoting the current region
o interest. The disadvantage of using fixed sized window is
that large objects may not fit within the window, resulting
in weaker proposal generation. The use of image pyramids
addresses this issue via the use of multi-scale sampling of
the image and subsequent image interpolation of window
regions at differing scale to a fixed size classification region
input size. First two stages of Figure 8A demonstrate region
proposal generation process for a sliding window approach.
After generating this region of interest proposals, each is
evaluated by the second stage of classification (here using a
CNN as per Section III, Figure 8A). As described in Section
III, with the use of transfer learning approach, CNN extracts
convolutional features and performs classification via fully-
connected layers. This method is similar to an external region
proposal generator (sliding window traversal of the image)
followed by CNN classification.
Faster RCNN (F-RCNN) is based on two subnetworks,
containing a unique region proposal network (RPN) and Fast
RCNN network together [11]. Instead of utilizing an external
region proposal algorithm as in [45], [47], this model has its
region proposal network (the main differentiator from Fast
RCNN [47]). The RPN consists of convolutional layers that
generate set of anchors with different scales and aspect ratios,
and predict their bounding box coordinates together with a
probability score denoting whether the region is an object or
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Fig. 8: Schematics for the CNN driven detection strategies evaluated.
A. Sliding Window based CNN (SW-CNN) [4], [7], B. Faster RCNN
(F-RCNN) [11], C. R-FCN [12], D. YOLOv2 [13]).

background. Anchors are generated by spatially sliding a 3x3
window through the feature maps of the last convolutional
layers of the Fast RCNN network. These features are then
fed to objectness classification and bounding box regression
layers. Objectness classification layer classifies whether a
region proposal is an object or a background while bounding
box regression layer predicts the coordinates of the area.
An RoI pooling layer resizes these regions to fixed sized
dimensions. fc layers then create feature vectors to be used
by bounding box regression and softmax layers (see Figure
8B).
R-FCN, proposed by Dai et al. [12], points out the main
limitation of Faster RCNN in that each region proposal
within RoI pooling layer is computed numerous of times
due to the two subsequent fully connected layers, which
is computationally expensive (Figure 8B). They propose a
new approach by removing fully-connected layers after RoI
pooling, and employing a new variant denoted as “position
sensitive score map” [12], which handles translation variance
issue in detection task (Figure 8C). Removing fully connected
subnetworks leads to much faster convergence both in training
and test stages, while achieving similar detection performance
results to Faster RCNN [11].
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YOLOv2 [13] is a fully CNN that achieves state-of-the-
art results for object detection. It uses specific techniques to
improve its performance against the prior work. Its initial
novelty stems from the fact that it performs detection in
a single forward-pass, while region-based approaches utilize
sub-network for region generation. Like Faster RCNN, it also
employs anchors. The main difference here, however, is that
instead of fixing the anchor parameters, this approach makes
use of k-means clustering over the input data to learn the
anchor parameters of the ground truth bounding boxes. In
addition to anchors, YOLOv2 performs batch normalization
after each layer, resulting in an improvement in the overall per-
formance. Another strategy is the use of higher resolution input
images together with multi-scale training. Unlike classification
networks that inputs smaller size images such as 224 × 224,
YOLOv2 accepts inputs with higher resolution varying be-
tween 350× 350 to 600× 600. Besides, the model randomly
resizes input images during the training, which allows the
network to work with objects with varying scales, and hence
handles scaling issue. The above strategies yield significant
performance improvements, and the approach achieves the
state-of-the-art.

The way YOLOv2 works is rather novel. It divides the input
into 13 × 13 grid cells, each of which predicts 5 bounding
box coordinates for each anchor. Moreover, for individual
predicted bounding boxes, the network outputs confidence
score showing the similarity between the bounding boxes
and the ground truth. Finally, the output also includes the
probability distribution of the classes that the predicted bound-
ing boxes belong. Performing regression and classification
within a single network makes YOLOv2 significantly faster,
achieving real-time performance.

C. Application to X-ray Security Imagery
We compare four localization strategies for our object

detection task within X-ray security imagery: a traditional
sliding window approach [10] coupled with CNN classification
[18], Faster RCNN (F-RCNN) approach of [11] (a contem-
porary architecture within recent object recognition challenge
results [42], [49]), R-FCN approach of [12] (comparable to F-
RCNN in performance yet offering significant computational
efficiency gains over the former), and YOLOv2 [13], which
currently achieves the best detection performance on PASCAL
VOC benchmark while keeping the computation in real-time.
Dataset: Instead of using multi-view conventional X-ray
patches that we manually crop for the classification task in
Section III, here we use full X-ray images to perform binary
and multiple class object detection.
Detection: For sliding window CNN (SW-CNN) we employ
800 × 800 input image, 50 × 50 fixed size window with a
step size of 32 to generate region proposals. We also use
image pyramids to fit the window to varying sized objects
using 9 pyramid levels. For the classification of the proposed
regions we use AlexNet [9], VGGM, 16 [15], and ResNet-{50,
101} [16] networks. Although [18] employs an extra bounding
box regression layer within their SW-CNN approach, we do
not perform regression as none of the prior work within this
domain does so [5], [10].

For Faster RCNN [11] we use the original implementation
with a few modifications, and train Faster RCNN with AlexNet
[9], VGGM, 16 [15], and ResNet-{50, 101} [16] architectures.
Since R-FCN is fully convolutional by design, we only use
ResNet-{50, 101} [16] networks for R-FCN to train and test.

For the training of the detection strategies explained here,
we employ transfer learning approach and use the networks
pre-trained on ImageNet dataset [42]. In so doing not only
increases performance but also reduces training time sig-
nificantly. We use stochastic gradient descent (SGD) with
momentum and weight decay of 0.9 and 0.0005, respectively.
The initial learning rate of 0.001 is divided by 10 with step
down method in every 10, 000 iteration. For F-RCNN/R-FCN,
batch size is set to 256 for the RPN. All of the networks are
trained by using dual-core Intel Xeon E5-2630 v4 processor
and Nvidia GeForce GTX Titan X GPU.

D. Evaluation

Performance of the models is evaluated by mean average
precision (mAP), used for PASCAL VOC object detection
challenge [50]. To calculate mAP, we perform the following:
we first sort nd detections based on their confidence scores.
Next, we calculate the area of intersection over union for
the given ground truth and detected bounding boxes for each
detection as

Ψ(Bgti , Bdti) =
Area(Bgti ∩Bdti)

Area(Bgti ∪Bdti)
, (1)

where Bgti and Bdti are ground truth and detected bounding
boxes for detection i, respectively. Assuming each detection
as unique, and denoting the area as ai, we then threshold it
by θ = 0.5 giving a logical bi, where

bi =

{
1 ai > θ;
0 otherwise. (2)

This is followed by a prefix-sum giving both true positives ~t
and false positives ~f , where

ti = ti−1 + bi, (3)
fi = ti−1 + (1− bi).

The precision ~p and recall ~r curves are calculated as

pi =
ti

ti + fi
, (4)

ri =
ti
np
,

where np is the number of positive samples. For a smoother
curve, precision vector is then interpolated by using

pi = max(pi, pi+1). (5)

We then calculate average precision (AP) based on the area
under precision (~p) recall (~r) curve

AP =

nd∑
i

pi∆r. (6)
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Model Network mAP camera laptop gun gun component knife ceramic knife

SWCNN AlexNet 0.608 0.682 0.609 0.748 0.714 0.212 0.683
VGGM 0.634 0.707 0.637 0.763 0.731 0.246 0.719
VGG16 0.649 0.701 0.724 0.752 0.757 0.223 0.734
ResNet50 0.671 0.692 0.801 0.747 0.761 0.314 0.713
ResNet101 0.776 0.881 0.902 0.831 0.848 0.392 0.803

RCNN AlexNet 0.647 0.791 0.815 0.853 0.582 0.188 0.658
VGGM 0.686 0.799 0.855 0.869 0.658 0.210 0.723
VGG16 0.779 0.888 0.954 0.876 0.832 0.304 0.819

F-RCNN AlexNet 0.788 0.893 0.756 0.914 0.874 0.467 0.823
VGGM 0.823 0.900 0.834 0.918 0.875 0.542 0.869
VGG16 0.883 0.881 0.918 0.927 0.938 0.721 0.912
ResNet50 0.851 0.844 0.879 0.916 0.901 0.677 0.889
ResNet101 0.874 0.857 0.904 0.931 0.911 0.732 0.907

R-FCN ResNet50 0.846 0.894 0.928 0.932 0.918 0.506 0.896
ResNet101 0.856 0.887 0.906 0.942 0.925 0.556 0.920

YOLOv2 Darknet288 0.810 0.821 0.861 0.914 0.904 0.551 0.814
Darknet416 0.851 0.888 0.883 0.952 0.924 0.605 0.851
Darknet544 0.885 0.896 0.894 0.943 0.933 0.728 0.913

TABLE V: Detection results of SW-CNN, Fast-RCNN (F-RCNN) [47], Faster RCNN (F-RCNN) [11], R-FCN [12] and YOLOv2 [13] for
multi-class problem (300 region proposals). Class names indicates corresponding average precision (AP) of each class, and mAP indicates
mean average precision of the classes.

As shown in Eq 7, we finally find mAP by averaging AP
values that we calculate for C classes.

mAP =
1

C

C∑
c=1

APc (7)

Tables V and VI show binary and multi-class detection
results for SW-CNN, F-RCNN, R-FCN with varying networks,
and a fixed sized number of region proposals of 300, and for
YOLOv2 with a fixed network with varying input image size.
For completeness, we additionally present the comparative
results for Fast R-CNN (RCNN) [47] (detection architecture
pre-dating that of F-RCNN [11] and R-FCN [11]).

As a general trend, we observe that performance increases
with overall network complexity such that superior perfor-
mance is obtained with VGG16 and ResNet101 for the region-
based approaches. This observation holds for both the 2-
class and 6-class problems considered here. Overall, YOLOv2
yields the leading performance for both 2-class and 6-class
problems. In addition to this set of experiments, we also
train the detection approaches using the pre-trained weights of
Dbp6 dataset introduced in Section III-C1. Since not observing
significant nuances in results, we do not include them here.

For the multi-class detection task (Table V) we see a similar
performance pattern to that seen in the earlier firearm detection
task. Here, SW-CNN performs worse than any network trained
using a Faster RCNN or R-FCN architecture. Similirwise,
overall mAP of RCNN is lower than any R-FCN and R-
FCN architecture. For comparison of F-RCNN and R-FCN,
we observe that Faster RCNN achieves its highest peak using
VGG16, with higher mAP than ResNet-50 and ResNet101.
R-FCN with ResNet-50 and ResNet101 yields slightly worse
performance, (mAP: 0.846, 0.856) , than that of the best
of Faster-RCNN. For the overall performance comparison,
YOLOv2 with an input size of 544×544 shows superior
performance (mAP: 0.885).

For firearm detection Table VI shows that SW-CNN, even
with a complex second stage classification CNN such as
VGG16 and ResNet101, performs poorly compared to any
other detection approaches. This poor performance is primarily
due to lacking a bounding box regression layer (Figure 8),
a significant performance booster as shown in [18], [45].
Likewise, the best performance of RCNN with VGG16 (mAP:
0.854) is worse than any F-RCNN or R-FCN. This is because
the RPN within F-RCNN and R-FCN provides superior object
proposals than the selective-search approach used in RCNN.
For overall performance on the binary firearm detection task,
R-FCN with YOLOv2 with an input image of size 416×416
yields the highest mAP of 0.974.

Model Network mAP - firearm

SW-CNN AlexNet 0.753
VGGM 0.772
VGG16 0.806
ResNet50 0.836
ResNet101 0.847

RCNN AlexNet 0.823
VGGM 0.836
VGG16 0.854

F-RCNN AlexNet 0.945
VGGM 0.948
VGG16 0.960
ResNet50 0.951
ResNet101 0.960

R-FCN ResNet50 0.949
ResNet101 0.963

YOLOv2 Darknet288 0.931
Darknet416 0.974
Darknet544 0.962

TABLE VI: Detection results of SW-CNN, Fast-RCNN (RCNN) [47],
Faster RCNN (F-RCNN) [11], R-FCN [12] and YOLOv2 [13] for
firearm detection problem (300 region proposals).

Figure 9 illustrates the impact on the number of region
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proposals and input image sizes on both detection performance
and runtime. Figure 9A-B demonstrate detection performance
of the approaches on 2-class and 6-class detection tasks,
respectively. Increase in the number of region proposals and
input image size lead to a rise in detection performance.
Overall, YOLOv2 achieves the highest detection on both tasks.
Figure 9C shows mean runtime in frame per second (fps)
where we can see YOLOv2 significantly outperforms the rest
of the detection approaches. The lowest fps YOLOv2 achieves
(50fps) is still considerably better than the best runtime R-FCN
(20), F-RCNN (2.9) and SW-CNN (0.8) achieve.

Figure 10 illustrates qualitative examples extracted from
the statistical performance analysis of Table V. We see that
detection approaches can cope with cluttered datasets where
classification methods can fail as shown in Figure 7.

V. CONCLUSION

In this work, we exhaustively explore the use of CNN in
the tasks of classification and detection within X-ray baggage
imagery. For the classification problem, we make a comparison
between CNN and traditional BoVW approaches based on
handcrafted features. To do so, we perform layer freezing to
observe the relative performance of fixed and fine-tuned sets of
CNN feature maps. In addition to this, we train SVM classifier
on top of the last layer of the network to have a consistent
comparison between CNN and handcrafted features. We also
explore various CNN to see the impact of network complexity
on overall performance.

Experimentation demonstrates that CNN features achieve
superior performance to handcrafted BoVW features. Fine
tuning the entire network for this problem yields 0.996%
True Positive (TP), 0.011 False Positive (FP) and 0.994 accu-
racy (A), a significant improvement on the best performing
handcrafted feature detector/descriptor (FAST/SURF, 0.830
TP, 0.033 FP, 0.940 A). For the classification of multiple X-
ray baggage objects, ResNet-50 achieves 0.986 (A), clearly
demonstrating the applicability of CNN within X-ray baggage
imagery, and outperforming prior reported results in the field
[1]–[5].

In addition to classification, we also study object detection
strategies to improve the performance of cluttered datasets
further, where classification techniques fail. Hence, we ex-
amine the relative performance of traditional sliding window
driven detection with CNN model [10], [18] against contem-
porary region-based [11], [12], [47] and single forward-pass
based [13] CNN variants. We show that contemporary Faster
RCNN, R-FCN, and YOLOv2 approaches outperform SW-
CNN, which is already empirically shown to outperform hand-
crafted features, regarding both speed and accuracy. YOLOv2
yields 0.885 and 0.974 mAP over 6-class object detection and
2-class firearm detection problems, respectively. This result
illustrates the real-time applicability and superiority of such
integrated region based detection models within this X-ray
security imagery context.

Future work will consider exploiting multi-view X-ray se-
curity imagery in an end to end design.
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Fig. 10: Detection examples using ResNet101. Columns: SW-CNN, Faster RCNN, R-FCN and YOLOv2.
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