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Abstract— Robust semantic scene segmentation for automo-
tive applications is a challenging problem in two key aspects: (1)
labelling every individual scene pixel and (2) performing this
task under unstable weather and illumination changes (e.g.,
foggy weather), which results in poor outdoor scene visibility.
Such visibility limitations lead to non-optimal performance of
generalised deep convolutional neural network-based semantic
scene segmentation. In this paper, we propose an efficient end-
to-end automotive semantic scene understanding approach that
is robust to foggy weather conditions. As an end-to-end pipeline,
our proposed approach provides: (1) the transformation of
imagery from foggy to clear weather conditions using a do-
main transfer approach (correcting for poor visibility) and (2)
semantically segmenting the scene using a competitive encoder-
decoder architecture with low computational complexity (en-
abling real-time performance). Our approach incorporates
RGB colour, depth and luminance images via distinct encoders
with dense connectivity and features fusion to effectively exploit
information from different inputs, which contributes to an
optimal feature representation within the overall model. Using
this architectural formulation with dense skip connections,
our model achieves comparable performance to contemporary
approaches at a fraction of the overall model complexity.

I. INTRODUCTION

Semantic scene segmentation is an active research topic

that targets robust pixel-level image classification. However,

as the reported performance of many state-of-the-art scene

understanding algorithms is limited to ideal weather condi-

tions, extreme weather and illumination variation could lead

to unexpectedly inaccurate scene classification and segmenta-

tion [2], [7], [10], [25], [28], [42]. To date, too little attention

has been paid to address the issue of automotive scene

understanding under extreme weather conditions (e.g., Foggy

weather) [8], [36], as the multitude of proposed deep learning

approaches are generally only evaluated on ideal weather

conditions. To overcome this shortcoming, the present paper

introduces an efficient algorithm that tackles the challenge

of automotive scene understanding in extreme weather con-

ditions using a novel multi-modal learning approach that

translates foggy scene images to clear scenes and utilizes

both depth and luminance information to achieve superior

semantic segmentation performance.

Previous attempts to tackle the issue of scene understand-

ing under non-ideal weather conditions for shadow removal

and illumination reduction [2], [25], [28], [42], haze removal
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Fig. 1. An illustration of our semantic segmentation approach under foggy
weather conditions, trained on Foggy Cityscapes [36] (partially synthetic
data) and evaluated on Foggy Driving [36] (real foggy scenes). Degraded
scenes visibility present under foggy weather conditions are corrected using
domain adaptation [48] to serve a better semantic segmentation performance.

and scene defogging [16], [29], [43], and foggy scene under-

standing [8], [36] are mostly based on conventional image

enhancement and dehazing methods. Despite the general

trend of performance improvement within automotive scene

understanding [4], [17], [27], [47], there is still significant

room for improvement across the spectrum of non-ideal

operating conditions. In parallel with using recent image

segmentation techniques [15], [20], [21], [40], employing the

concept of image-to-image translation to map one domain

onto another [22], [48] is a useful step that enables accurate

semantic segmentation performance under extreme weather

conditions.

In this work, we propose an efficient end-to-end automo-

tive semantic scene understanding capable of performing un-

der foggy weather conditions. We employ domain adaptation

within scene understanding as a method to correct for the

degraded visibility present under foggy weather conditions.

In addition, we use a lightweight semantic segmentation

architecture that incorporates RBG colour, luminance and

depth images via distinctive encoders contributing to a

deeper extraction for the representation of different features,

which leads to superior segmentation performance. As an
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Fig. 2. Overview of our approach using [21], [48]. The source domain X (foggy scene) mapped to the target domain Y ′ (corrected image). Subsequently,
the corrected image Y ′ is fed to the RGB encoder in the semantic segmentation network. The Depth (D) and luminance (L) images are incorporating RGB
colour via the LD encoder. Finally, the output from the two encoders is passed to the semantic segmentation decoder.

integration methodology within encoders, we use a fusion-

based connection. To avoid information loss and share high-

resolution features in the latter reconstruction stages of CNN

upsampling, we leverage skip-connections [30], [34], [40],

[44]. Figure 1 provides an illustration of our foggy semantic

scene understanding approach within domain adaptation.

II. RELATED WORK

The related work is organized into two main categories:

(i) semantic segmentation (Section II-A) and (ii) domain

transfer (Section II-B).

A. Semantic Segmentation

Modern segmentation techniques utilize deep convolu-

tional neural networks and outperform the traditional ap-

proaches by a large margin [3], [4], [17], [27], [47]. These

contributions use a large dataset such as ImageNet [35]

for pre-trained models. Recent segmentation techniques have

distinct characteristics denoted by their design such as: (1)

network topology: pooling indices [3], skip connection [34],

multi-path refinement [27], pyramid pooling [47], fusion-

based architecture [15] and dense connectivity [20], (2)

varying input: colour RGB or RGB-D with depth [15], [19],

depth and luminance [21], and illumination invariance [1],

and (3) consideration of adverse-weather conditions [8], [14],

[36]. As the main objective of this work is semantic scene

segmentation under foggy weather conditions, recent studies

in this specific domain are specifically presented in this

section.

Different approaches have been proposed for tackling

the issue of scene understanding under adverse weather

conditions. To address illumination changes, an illumination-

invariant colour space approach was proposed in [1], [23],

[25] to minimize scene colour variations due to varying

scene lighting conditions. Other approaches [8], [36], [38]

addressed scene segmentation under foggy weather condi-

tions using a semi-supervised approaches through generating

synthetic foggy images from real-world data, and augmenting

clear images with their synthetic fog images. By adapting

segmentation models from day to night scenes, [37] ad-

dressed the issue of vision under nocturnal conditions.

Similarly, our model is trained on foggy scenes (synthetic

images) adapted to normal using domain adaptation via style

transfer (Section II-B) . Inspired by LDFNet [21], we employ

the idea of incorporating luminance and depth alongside

RGB, utilizing skip connections as well as fused features

to perform semantic segmentation under foggy weather con-

ditions.

B. Domain Transfer

Transferring an image from its real domain to another

differing domain allows multiple uses of such images taken

in complex environments or generated in different forms.

Using recent advances in the field of image style transfer,

[11], where target images are generated by capturing the style

texture information of the input image by utilizing the Gram

matrix, work by [26] shows that image style transfer (from

the source domain to the target domain) is the fundamental

process by which the differences between source and target

distribution are minimized.

Recent methods [22], [39], [48] used Generative Adver-

sarial Networks (GAN) [13] to learn mapping from source

to target images. Based on training over a large dataset

for specific image style, CycleGAN [48] shows an efficient

approach to transfer image style from one image domain into

another.

Within the context of semantic segmentation, we take

advantage of GAN [13] to improve semantic segmentation

by generating target scenes (clear-weather scenes) from the

source domain (foggy scenes images) as source images



Ix mapped into a target domain Iy — hence significantly

increasing our available image data training resources.

III. PROPOSED APPROACH

Our main objective is to train an end-to-end network that

semantically labels every pixel in a scene that is invariant to

both weather and illumination variations. We make use of

Foggy Cityscapes dataset [36] for training. However, as the

visibility is degraded due to fog, we attempt to reduce this

sensing challenge using a model trained to transfer the style

of foggy scenes to normal. Foggy Driving [36] and Foggy

Zurich [8] are used as independent test sets comprising real

world evaluation examples.

In general, our approach consists of two sub-components,

namely domain transfer and semantic segmentation (each

functioning as an integrated unit). These sub-components

produce two separate outputs: a transformed clear-scene

image (generated from a foggy domain) and semantic pixel

labels. The pipeline of our approach is shown in Figure 2. In

this section, we provide a detailed overview of these two sub-

components: Domain Transfer (Section III-A) and Semantic

Segmentation (Section III-B).

A. Domain Transfer

Our goal is to learn mapping D :X → Y from the source

domain X (foggy scenes) to the target domain Y (clear-

weather) for which we assume that the scene visibility level

in the constructed image is the optimal input to the subse-

quent Semantic Segmentation (Section III-B). We use GAN

[13] to learn this domain transfer mapping function (shown

in Figure 2, lower). A generator GX→Y (generating clear

scenes samples Y ′) and a discriminator DY (discriminating

between Y and Y ′) are used to perform the mapping function

from the source and target domains. The loss for each

generator G coupled with a discriminator D is calculated

as follows:

Ladv(X → Y ) = min
GY →X

max
DY

Ey∼Pd(y)[log(D)(y)]+

Ex∼Pd(x)[log(1−DY (GX→Y (x)))],
(1)

where Pd is the data distribution, X the source domain with

samples x and Y the target domain with the samples y.

B. Semantic Segmentation

As a subsequent component of the overall model, our

pipeline performs the task of semantic segmentation on

the corrected images Y ′ (mapped from foggy X to nor-

mal Y weather conditions via domain adaptation [13] as

GX→Y (X) = Y ′) incorporated with luminance L with or

without depth D (shown in Figure 2, upper). Motivated

by [21], we use an auto-encoder architecture for semantic

segmentation, consisting of two distinctive encoders for

image downsampling and features extraction: RGB encoder

(ERGB) and luminance with depth encoder (ELD) or only

luminance (EL) if depth is not available (Figure 2, upper).

Using explicit encoders for RGB colour, luminance and

depth are considered to efficiently exploit information from
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Fig. 3. Details of the segmentation network which consists of two encoders
taking two types of inputs: RGB Image and LD Image (Luminance and
Depth channels).

different inputs such as luminance and depth [15], [21].

As seen in Figure 3, we utilize dense-connections and

features fusion to gain an optimal feature representation.

To subsequently upsample the feature maps representation

to the original input dimension, corresponding decoder is

used (Figure 2, upper). Our encoder-decoder architecture

is leveraging skip-connections to keep sharing high-level

features which leads to a superior semantic segmentation

performance (Figure 3).

RGB encoder: Designed to deal with a three-channel

RGB input, the RGB encoder (ERGB) (adopted from [33])

comprises of three downsampling stages ({16, 64, 128})

performed by three downsampler blocks consisting of con-

volutional and max pooling layers which are subsequently

concatenated and followed by batch normalization and

ReLu() activation function. The first downsampling stage

only applies the downsamper block to extract the input

features and reduce its dimensions. Subsequently, five non-

bottleneck modules are implemented including the factorized

convolutions (convolution kernel n×n factorized into n×1
and 1×n kernels), each followed by (ReLu()) and (batch

normalization with ReLu()) respectively. With dilated and

factorized convolutions, eight non-bottleneck modules were

implemented as the last component of ERGB (Figure 3).

LD encoder: Unlike the RGB encoder, the luminance and

depth encoder (ELD) (adopted from [21]) deals with lumi-

nance with or without depth images (concatenated as two-

channel input). As a parallel functioning to ERGB , ELD

is designed with a dense connectivity [20] technique to

enhance the information flow from the earlier to the last

layers. This design increases the effectiveness of the model

by reinforcing information propagation when performance is

degraded [15]. ELD consists of three downsampling stages

(the same as in ERGB) design with three dense blocks; each

has {4, 3, 4} modules respectively. Similar to the first stage

in ERGB , the input is downsampled using the downsampler

block discussed in ERGB . In the second and third stages,

a transition layer (1×1 convolution followed by batch nor-

malization, ReLu() and 2×2 average pool layer). As some

datasets do not contain depth maps, we used a luminance-

only encoder (EL) that is identical to (ELD) except that it

only takes a luminance channel. We make use of a distinct



Fig. 4. Sample image from Cityscapes [6] (top left) followed by (clockwise)
foggy images (partially synthetic) with varying visibility (light to dense)
from Foggy Cityscapes [8].

encoder for luminance and depth to exploit deeper and better

representation from the depth and luminance maps [15], [21]

(Figure 3).

ERGB and ELD are linked by fusing output layers from

blocks sharing the same number of channels among ERGB

and EDL. Since it requires less computational cost, the

fusion connectivity is implemented by summing the two

layers such that for inputs x and y, the fused feature map is

ERGB(x) + ELD(y) or EL(y).

Decoder: After fusing the feature maps extracted from the

last layer of ERGB and either EDL or EL, a decoder

upsamples the feature maps to the original resolution. The

upsampling is implemented in three stages {64, 16, 19}. In

the first two stages, transposed convolution, batch normal-

ization, and ReLu() activation function, as well as two non-

bottleneck modules, are employed. As the last component

in the encoder, the transposed convolution layer maps the

output to 19 class labels which we aim to predict (Figure 3).

Unlike LDFNet [21], we utilize skip connections for the

fused features from the encoders into the decoder to avoid

the loss of the high-level spatial features after being down-

sampled (Figure 3). The fused feature maps {64, 16} passed

from the encoders are concatenated with the corresponding

upsampled feature maps in the decoder. As a semantic

segmentation loss function, cross-entropy with pixel-wise

softmax() is used summing over all pixels within a patch

as follows:

Pk(x) =
eak(x)

∑K

k′=1 e
a
k′ (x)

, (2)

Lseg = − log(Pl(S(x))), (3)

where S(x) denotes the output of the segmentation network,

K is the number of classes, Pk(x) is the approximated

maximum function, and l is the ground truth label, ak(x)
the feature activation for the channel k. As an overall loss,

a joint overall loss function for our model is calculated as

follows:

L = Ladv(Iy) + Lseg(Is). (4)

Foggy Zurich Foggy Driving

Fig. 5. Sample images from Foggy Zurich [8] and Foggy Driving [36]
(real-world foggy datasets) along with their annotations.

The weighted sum of losses in the joint loss is dynamically

updated using the homoscedastic uncertainty technique to

weight and balance the two losses [5].

IV. DATASET

The availability of numerous well-annotated datasets [6],

[9], [12], [35] has led to a proliferation of semantic segmen-

tation studies. In this section, we will present the following

datasets used in this paper: Cityscapes dataset [6] as the

base dataset representing clear scenes, and Foggy Cityscapes

dataset [36] as a partially synthetic data where fog is added

into [6] (fine weather). As real-world datasets for foggy

weather conditions, Foggy Driving [36] and Foggy Zurich

[8] are used.

Cityscapes Dataset: We evaluate our approach on the

Cityscapes [6] (Figure 4), a large dataset collected for

urban-scene semantic segmentation. The dataset comprises of

2, 975 training and 500 testing image examples (resolution:

1024×2048) with 19 pixel classes: {road, sidewalk, building,

wall, fence, pole, traffic light, traffic sign, vegetation, terrain,

sky, person, rider, car, truck, bus, train, motorcycle and

bicycle}. In addition to semantic labels, Cityscapes provides

disparity dataset labelled using Semi-Global Matching [18],

used as a complementary information for semantic segmen-

tation.

Foggy Cityscapes Dataset: Foggy Cityscapes [36] is a

partially synthetic data generated from Cityscapes [6] by

adding synthetic fog to the real images using fog simulation

[36]. Three different versions of this dataset (shown in Figure

4) exist with varying fog density levels (controlled using

attenuation coefficient β ∈ {0.005, 0.01, 0.02} —from light

to dense fog) and were used in the present study. This dataset

inherits the annotations from Cityscapes [6] as labels for

the synthetic foggy datasets as well as disparities. Foggy

Cityscapes dataset consists of 8925 training and 1500 testing

image examples (resolution: 1024× 2048).

Foggy Driving Dataset: The Foggy Driving dataset [36]

(Figure 5) is a real-world dataset collected in foggy-weather

conditions, consisting of 101 images (resolution: 960×1280)

with annotations for semantic segmentation and object de-

tection tasks. Following Cityscapes [6] dataset, the Foggy



Methods Foggy Zurich Foggy Driving Complexity of the Network

Models Network Architecture Training Fine-Tuning Mean IoU Mean IoU Number of Parameters FPS

CMDAda [8] AdSegNet [41] - DeepLab-v2 [4] C — 25.0 29.7 44.0M 20

SFSU [36] Dilated Conv. Net. (DCN) [46] C FC (498) 35.7 46.3 134M -

CMAda2+ [38] RefineNet-ResNet-101 [27] C FC (498) 43.4 49.9 118M 22

CMAda3+ [8] RefineNet-ResNet-101 [27] C FC (498) 46.8 49.8 118M 22

Hanner et al. [14] RefineNet-ResNet-101 [27] C FS (24,500) 40.3 48.4 118M 22

Hanner et al. [14] RefineNet-ResNet-101 [27] C FS (498) 42.7 48.6 118M 22

Hanner et al. [14] RefineNet-ResNet-101 [27] C FC+FS (498) 41.4 50.7 118M 22

Hanner et al. [14] BiSeNet [45] C — 16.1 27.2 50.8M -

Hanner et al. [14] BiSeNet [45] C FC (498) 25.0 30.3 50.8M -

Hanner et al. [14] BiSeNet [45] C FS (24,500) 27.8 30.9 50.8M -

Hanner et al. [14] BiSeNet [45] C FS (498) 27.6 31.8 50.8M -

Hanner et al. [14] BiSeNet [27] C FC+FS (498) 35.2 30.9 118M 22

Ours w/o domain adaptation — C FC (498) 8.7 17.6 2.4M 42

Ours w/ domain adaptation — C FC (498) 21.4 29.4 13.8M 20

TABLE I

QUANTITATIVE COMPARISON OF SEMANTIC SEGMENTATION ON FOGGY ZURICH [8] AND FOGGY DRIVING [36] DATASETS OF OUR APPROACH

AGAINST STATE-OF-THE-ART APPROACHES. C: CITYSCAPES [6]; FC FOGGY CITYSCAPES [36]; FS: FOGGY SYNSCAPES [14]. THE SPEED

COMPARISON (FRAMES PER SECOND (FPS) IS BASED ON THE CITYSCAPES [6] TEST DATASET.

Driving dataset is labelled with 19 classes (33 images with

fine annotations and 68 images coarsely annotated).

Foggy Zurich Dataset: The Foggy Zurich [8] (Figure 5) is

a real-world foggy-scenes dataset consisting of 3808 images

(resolution: 1920× 1080) collected in Zurich. Following the

approach of Cityscapes [6], Foggy Zurich provides pixel-

level annotations for 40 scenes (finely annotated), including

dense fog.

V. IMPLEMENTATION DETAILS

We implement our approach in PyTorch [31]. For opti-

mization, we employ ADAM [24] with an initial learning

rate of 5 × 10−3 and momentum of β1 = 0.5, β2 = 0, 999.

By following [32] and [21], we weight the classes of the

dataset duo to imbalance number of pixels of each class in

the dataset as follows:

ωclass =
1

ln(c+ pclass)
, (5)

where c is an additional parameter empirically set to 1.10

to restrict the class weight and pclass is the probability of

belonging to that class. We train the model for 100 epoch by

using NVIDIA Titan X and GTX 1080Ti GPUs. We apply

data augmentation in training using random horizontal flip

for high resolution images (256×512). For semantic accuracy

evaluation, we use the following evaluation measures: class

average accuracy, the mean of the predictive accuracy over all

classes, global accuracy, which measures overall scene pixel

classification accuracy, and mean intersection over union

(mIoU).

For the Foggy Cityscapes [36], Foggy Driving [36], and

Foggy Zurich [8] datasets we train using the available in-

formation. For all datasets, as a complementary information

source, we make use of the luminance transformation, which

is a translated grayscale image L derived from IRGB ∈
{IR, IG, IB} to both reduce the noise and improve feature

extraction, defined as follows:

Methods
Results

Global avg. Class avg. Mean IoU

Ours w/o domain adaptation 90.8 68.5 54.9

Ours w/ domain adaptation 91.6 70.4 58.0

TABLE II

QUANTITATIVE RESULTS OF SEMANTIC SEGMENTATION OVER THE Foggy

Cityscapes [6] TEST DATASET (PARTIALLY SYNTHETIC DATA) OF OUR

APPROACH WITH AND WITHOUT USING DOMAIN ADAPTATION.

L = 0.299(IR) + 0.587(IG) + 0.144(IB). (6)

VI. EVALUATION

We evaluate the performance of our proposed approach

on the benchmark foggy weather conditions datasets: Foggy

Cityscapes [36], Foggy Driving [36], and Foggy Zurich [8].

The evaluation was performed as follows:

1) We train the domain adaptation component (Section

III-A) (employed later as a sub-component (Fig. 2)

trained in step 3) on the Cityscapes dataset (normal

weather) [6] and Foggy Cityscapes (adverse weather)

[36] to map from foggy scenes to normal.

2) In the same manner, we train the semantic segmen-

tation component (Section III-B) on the Cityscapes

dataset [6] (normal weather).

3) Models obtained from steps (1, 2) are fine-tuned within

a unified architecture using refined Foggy Cityscapes

dataset [36] (a subset including 498 training and 52

testing better quality images).

4) The fine-tuned architecture in step 3 is evaluated on

Foggy Driving [36] and Foggy Zurich [8].

With both qualitative and quantitative comparisons against

the state-of-the-art approaches, we assess our approach on

the aforementioned benchmark (foggy weather conditions
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Foggy Zurich

Segmentation w/o adaptation Segmentation w/ adaptation

Fig. 6. Semantic segmentation predictions on Foggy Driving [36] and Foggy Zurich [8] for the proposed approach. The left column shows two scenarios
of each dataset followed by Corrected Image: corrected image using domain adaptation; Ground Truth: ground truth segmentation; Segmentation w/o

adaptation: segmentation results without using domain adaptation; Segmentation w/ adaptation: segmentation results with domain adaptation.

datasets). As an initial step, we evaluate the semantic seg-

mentation performance directly on the foggy scenes with-

out domain adaptation . Here, we deal with the semantic

segmentation model (shown in Figure 3) as an independent

model and isolated it from the entire pipeline (illustrated

in Figure 2 and including the domain adaptation sub-

component) to investigate its performance on the foggy

dataset. As seen in Table I and Figure 6, our model fails to

produce any desirable improvements in terms of qualitative

and quantitative results. However, our approach with domain

adaptation (Figure 2, lower) provides the best results when

compared without domain adaptation (Table I and Figure

6). Overall, we consider domain adaptation as a necessary

step to correct foggy scenes before feeding them into the

segmentation network.

As an initial evaluation applied to synthetic data, we

test our approach on the Foggy Cityscapes [36]. In the

evaluation, we consider the test set from the same (Foggy

Cityscapes) used in training time, which leads to improved

segmentation. As seen in the results shown in Table II, using

domain adaptation contributes and increases to the mean

intersection over union (IoU) by (3.1%) when compared with

no domain adaptation. Figure 7 shows qualitative results on

Foggy Cityscapes [36], for our approach with and without

using domain adaptation.

Furthermore, we evaluate the performance of scene under-

standing and segmentation on the real-world datasets, Foggy

Driving [36] and Foggy Zurich [8], with and without applying

domain adaptation (III-A). This task is a more challenging

as our model has not been training on the aforementioned

datasets. Without any domain adaptation, our approach does

not produce any qualitatively or quantitatively desirable

results. However, with domain adaptation (Section III-A),

our approach achieves superior results when compared to the

absence of domain adaptation, in the mean intersection over

union (IoU) scores of (29.4%) (Foggy Driving) and (21.4%)

(Foggy Zurich) (see Table I). Figure 6 shows qualitative

results on Foggy Driving [36] and Foggy Zurich [8] signifi-

cant differences are evident between the two aforementioned

methods.

As a comparison with the state-of-the-art semantic seg-

mentation under foggy weather conditions, our approach

with domain adaptation outperforms the work of [14] (see

Table I). However, our proposed approach remains com-

petitive with approaches such as [8], [14], [36], [38], as

demonstrated in Table I. However, all comparators use off-

the-shelf segmentation networks such as RefineNet [27],

DeepLab [4], Dilated Conv Net [46], and BiSeNet [45],

which offer higher segmentation accuracy due to their use

of complex architectures at the expense of viable real-

time performance. Using our purpose architecture requires

less computational complexity and offers real-time inference

performance, which represents an important aspect of our

proposed approach. As shown in Table I, our approach

with a significant number of parameters when compared to

contemporary state-of-the-art architectures, enables a real-

time inference speed of 20 – 42 fps with and without

the use of domain adaptation respectively, enabling a real-

time performance. Further evidence of the efficacy of our

approach is being trained on less data (Foggy Cityscapes

[36]), unlike [14] that have been trained on more datasets

(Foggy Cityscapes [36] and Foggy Synscapes [14]), which

contributes to higher accuracy but at the expense of higher

computational complexity.



Corrected ImageFoggy Cityscapes Segmentation w/o adaptation Segmentation w/ adaptationGround Truth

Fig. 7. Semantic segmentation predictions on the Foggy Cityscapes [36] for the proposed approach. The left column shows three scenarios of the dataset
followed by Corrected Image: using domain adaptation; Ground Truth: ground truth segmentation; Segmentation w/o adaptation: segmentation results
without using domain adaptation; Segmentation w/ adaptation: segmentation results with domain adaptation.

VII. CONCLUSION

This paper proposes a novel end-to-end automotive se-

mantic segmentation within foggy scene understanding. Us-

ing a unified model, we make use of domain adaptation

(GAN-based) [13] to adapt a scene taken in foggy weather

conditions to normal thus increasing the scene visibility.

Subsequently, the adapted images are fed to an effective

semantic segmentation model for training. For real-time per-

formance, our segmentation network is based on light-weight

architecture that includes features fusion, dense connectivity

and skip connections, making the approach real-time (20 –

42 fps with and without domain adaptation respectively). As

a result, the performance of our approach has progressively

improved and achieved significant performance over the

state-of-the-art semantic segmentation under foggy weather

conditions [8], [36], [38].
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