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Abstract—This study presents a novel method for liquid detec-
tion within 3D Computed Tomography (CT) baggage inspection
imagery. Liquid detection within airport security is currently
of significant interest due to security threats associated with
liquid explosives. In this paper we propose a robust technique
based on the automatic identification of universal geometric
properties of liquids within 3D space. The proposed approach
is based on two stages of geometric fitting. Firstly, we identify
the 3D plane which fits to the horizontally oriented surface of the
liquid recognizing the universal self-leveling property of liquids
in any given container. Secondly we conduct 2D shape analysis to
highlight the shape of the liquid surface at a given level within
the container using a least squares elliptical fitting approach.
The proposed approach relies on the fact that occurrences of
such perfectly aligned horizontal planes within a 3D CT security
baggage scan are generally unlikely. Occurrences of such instance
are thus indicative of liquid presence. Our results, over an
extended set of complex test examples, confirm a liquid detection
rate of 85%-98% with a moderate processing time. Furthermore
as this proposed approach is based purely on the geometric
properties of liquids and robust geometrical shape detection, this
methodology is intrinsic to the 3D nature of the resulting CT data
and not dependent on any exemplar training imagery.

Index Terms—Computed Tomography; Aviation Security; 3D
Security Screening; Baggage Imagery; Planar Fitting; Elliptical
Fitting; liquid detection

I. INTRODUCTION

The motivation behind this work emanates from the re-
quirement to detect the presence of liquids within transport
security screening processes. Specifically this work consists of
investigating and developing a methodology for the automatic
detection of liquids items within 3D Computed Tomography
(CT) imagery. Recently the use of 3D CT imagery, akin to
that in medicine, has received increasing attention as a security
screening aspect within transport security screening [1], [2].
Indeed the development of high-speed 3D CT baggage scan-
ners allows the unique physical and 3D geometrical properties
of baggage and parcel items to be captured in an efficient way
[3].

The principle of 3D CT scanners lies in X-ray imaging
which consists in measuring the absorption of the X-ray beam
attenuation of objects within the scanner. As an extension
of classical 2D X-ray security scanner the baggage item is
scanned as a sequence of 2D X-ray slices [4], [5]. Theses slices
are used as an image stack to create a 3D CT volume [5]. As
a consequence the scanned 3D object is captured according to

the density of its material component at every 3D location (i.e.
CT voxel location). This additionally allows 3D visualization
of objects within a complex 3D baggage scan based on their
density information (Figure 1a). By contrast, conventional 2D
X-ray security imagery can be somewhat more difficult to
process (both manually and automatically) due to the inherent
problem of object inter-occlusion within the planar 2D image
projection of the real-world 3D baggage/parcel (e.g. Figure
1b) [3].

Figure 1. Exemplar 3D CT image (A) and exemplar 2D X-ray image (B)

By contrast, the use of 3D CT imagery overcomes ambi-
guities caused by such inter-occlusion (within conventional
2D X-ray imagery) and also allows objects to be isolated
based on the CT density information recorded at each voxel
(in Hounsfield units (HU) that measure radiodensity [5]).
This enables utilization of both material density information,
for which a priori knowledge of common materials is well-
established [6], and 3D geometric shape detection in voxel-
space for the automated detection and classification of objects
within the CT scan imagery [7], [8], [9], [10], [11]. In this
work, we take specific advantage of both the 3D geometric
properties of objects within such CT baggage imagery and
additionally the physical behavior of liquid within a given 3D
container. Overall this concept consists of two main aspects:
a) the ability of liquids to “self level” to the ground plane as a
consequence of gravity (Figure 2b) the morphological property
of liquids to adapt and fill any 3D container space constraints.

This first characteristic is the foundation of the liquid
detection methodology we propose. Due to the horizontal
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Figure 2. The basic liquid horizontal leveling property

leveling property of liquids, the top surface of a stationary
liquid is almost perfectly parallel to the ground plane (and
consequently in our case to the orientation of the baggage item
within the scanner). This property can be readily detected via
geometric planar fitting [12] in 3D voxel-space. By contrast,
the occurrence probability for such a perfectly aligned plane
within a scanned baggage item, consisting of random objects
and clutter, is generally accepted as low (discounting surface
water instances on the exterior of the baggage item). As the
content of a given baggage/parcel item is likely to be complex
and disorientated with respect to the ground plane, liquid con-
tainers may be potentially set in any 3D position/orientation
within the baggage. In any such occurrence the “self leveling”
property (Figure 2) will always hold true for all but the most
viscous of liquids.

Our second characteristic concerns itself with the sense that
within any given container void, the morphological self filling
property of liquids will means that a liquid signature in the
shape of the container will be present within any identified
horizontal liquid plane. In addition to the presence of the a
perfectly aligned 3D planar surface, this now introduces a
second “within the plane” signature - i.e. the presence of a con-
sistent morphologically filled shape within that detected plane.
Our use of geometric planar fitting [13] is complemented by
geometric elliptical fitting in 2D (i.e “within the plane”) for
this task [14].

II. PRIOR WORK

In general, existing techniques targeting the automated de-
tection of (specifically) liquid explosives is varied covering the
use of vapor detection, X-ray detection, laser detection, nuclear
detection to electromagnetic based approaches [4]. By contrast
we concern ourselves with the detection of the presence or
absence of liquids in general via automated interpretation of
CT baggage imagery.

Current interest in CT imagery within a security screen-
ing context stems from their capability in materials-based
explosives detection [4], [15]. Dual-Energy Computed To-
mography (DECT) [5], whereby objects are scanned at two
distinct X-ray energy levels (for each CT slice), provides an
effective means for such materials-based discrimination [2].
As a result of this primary explosives detection objective
within the aviation-security domain, DECT baggage scanners
have become increasingly dominant offering both CT density
and materials based information. However, despite overcoming
the inherent problem of occlusion within 2D X-ray, demand
for high throughput has often meant that 3D CT baggage

imagery typically contains substantial noise, metal-streaking
artefacts and voxel resolutions of significantly poorer quality
than the modern medical CT equivalent [5], [16] (Figure
1). Prior work has considered denoising and metal artefact
reduction in baggage CT imagery [17], [16], [18] although
the overall impact on object classification within this space
remains unproven [7], [8], [9], [11], [1].

Work on the automated interpretation of CT baggage im-
agery remains in its infancy [9], [8], [10], [11], [1]. Bi et al.
[19] attempted handgun detection within CT baggage imagery.
The work did not involve processing the 3D data directly as
the problem was reduced to searching for the characteristic
cross-section of the handguns and no explicit quantitative or
qualitative detection results are presented. Megherbi et al. [9],
[10] investigated the detection of bottles, as generalized ob-
jects, within CT volumetric data using a normalized histogram
of shape index descriptor and rotational invariant 3D Zernike
descriptors. Correct classification rates in excess of 98.0%
are presented using a relatively small dataset highlighting the
data dependency of such machine learning driven approaches.
Flitton et al. [8] compare the performance of a 3D visual
cortex-based approach to a bag of visual word model using the
3D SIFT descriptor [7], [11], [1]. The cortex-based approach
is shown to outperform the bag of visual words approach in the
detection of handguns and bottles in manually segmented sub-
volumes. Mouton et al. [20] demonstrate a further improve-
ment over the 3D visual cortex model in terms of classification
accuracy and processing time using a code-book approach
based on extremely randomised clustering forests.

The most similar work to our own [21] proposes a method-
ology for the detection of planar materials within baggage
CT imagery using a 3D extension to the Hough transform.
Although carried out within an aviation security context, this
work is entirely concentrated on fast detection of 3D planes
with a view to improving the quality of scan data within a
helical CT scanner (as opposed to liquid detection). The au-
thors propose the detection of basic geometric forms, notably
plane detection, to validate the performance and correctness
of the CT volume reconstruction algorithms in use within the
helical CT scanner machine. Their approach [21] is based on
the classical Hough transform applied to 3D CT volumetric
imagery for automatic plane detection. The proposed method
starts with the use of edge detection within each image slice
to identify potential regions of interest upon which Hough line
detection is then performed to build up 3D plane detection on
a slice-by-slice basis.

By contrast, we propose the joint use of both geometric
plane fitting within the, already reconstructed, 3D CT volume
itself and secondary confirmation via 2D elliptical fitting
within identified planes of interest. This explicitly focuses on a
geometric approach for the identification of liquid containers,
via their surface properties within 3D CT baggage imagery.

III. METHODOLOGY

Here we propose a liquid detection methodology within
3D CT volumetric baggage imagery based on a two stage
approach - primary 3D planar fitting (Section III-B) and
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secondary confirmation and localization using 2D elliptical
fitting (Section III-C).

A. Pre-processing

From the 3D CT imagery, composed of a dense topology
of voxels (X × Y × Z topology of CT density samples),
we perform two initial stages of pre-processing. This dense
dataset is firstly thresholded to produce a sparse set of voxels
with CT density corresponding to liquids whereby we use two
thresholds at τwater ± α (α = 50 HU, approximately 5%
variation within the Hounsfield scale [5]). All CT scanners
are calibrated such that distilled water has a density value
of zero, τwater = 0 HU [5]. The resulting threshold range
encompasses a range of liquid viscosity ranging from fats
(v −50 HU) to blood and soft tissue (v +30 → 45 HU).
This is illustrated in Figure 3, where the bottle containing
liquid is clearly distinguishable in the cluttered baggage image
from the other items falling within the same CT density
range. After thresholding the only compact spatial cluster
of voxels remaining is the bottle containing liquid whereas
other remaining voxels are sparsely distributed (as noise and
are hence largely transparent within the volume rendering of
Figure 3). This data refinement significantly reduces the level
of background clutter, allowing subsequent 3D planar fitting
to focus on the detection of liquid derived surface features.

A secondary pre-processing step, denoted as slice differ-
encing, performs a vertical search through the thresholded
volume (Figure 3, right) to determine the maximal density
differences between two adjacent voxel slices (with reference
to the horizontal plane). This will represent a horizontal slice
region where a significant transition from liquid to air is
occurring with this volume. Empirically, we use a threshold
on these slice-to-slice differences, τslice, which is set based
on the real-world dimensions of the liquid surface we wish
to detect. Based on detection within typical consumer liquid
containers found within the test baggage items used in this
study and a uniform voxel sampling in the horizontal plane
of 512 × 512 at 2.5mm3 per voxel, we set τslice = 350 (i.e.
a potential liquid to air surface transition is determined by a
difference at 350

5122 = 0.1% of surface voxels which translates
as a surface area of 350×2.5mm2 (875mm2) within the slice).

B. 3D Planar Fitting

In our first stage of liquid surface detection, we employ
geometric fitting to identify potential planar occurrences near
to the horizontal plane. We perform a vertical search through
the CT volume image for subsets of the remaining voxels
(Figure 3, right) that correspond to a significant planar artifact
using an adaptation of the RANdom SAmple and Consensus
(RANSAC) 3D planar fitting algorithm of [12] in regions
where maximal differences between two adjacent horizontal
slices occur (Section III-A, corresponding to the liquid to air
transition surface region).

RANSAC is an robust statistical technique for the general-
ized fitting of a mathematical model to data points based on
iterative randomized subset selection and evidential evaluation
[22]. From a given data set containing outliers (e.g. (Figure

3, right) a random subset is isolated to form a parameter
hypothesis for a given model, upon which a voting scheme (i.e.
consensus forming) identifies the most likely parametrization
present given the data (maximum a posteriori). Using the
mathematical model of a 3D plane (Eqn. 1) we employ
RANSAC using a sliding window mechanism over a set of sw
horizontal slices within the volume (parallel to the scan bed
of the CT scanner, advancing vertically top to bottom - Figure
4). The use of such a sliding window approach facilitates
identifications of liquid surfaces that form planes that cross one
or more horizontal planes within the CT volume itself. This
accounts for any inaccuracy in the level of the CT scanner
relative to the true gravitational ground plane to which the
liquid surface plane will level itself (Figure 2). In this work
we empirically use a vertical sliding window of sw = 5 (Figure
4).

Our fitting approach considers the standard planar equation
in 3D space where (x, y, z) are the coordinates of points lying
on plane in R3 which is characterized by the four coefficients
{ap, bp, cp, dp} as follows:

apx+ bpy + cpz + dp = 0 (1)

In our formulation the set of coordinates (x, y, z) corre-
sponds to the voxel data points (xi, yi, zi) within the sliding
window sub-sampling used for vertical planar search within
the volume (Figure 4). Following from [13], we identify a
general method to compute and extract a generalized shape
fit for a shape defined by a basis set l parameters/coefficients
with l − 1 points. From Eqn. 1, we can hence define a plane
from 3 data points. In general this method is expressed as
least square optimization problem such that given M , a m×n
matrix of rank r ≤ min(m,n), and k, a m-dimensional vector
we require to find pp, a n-dimension parameter vector which
minimizes the Euclidean distance of the transform Mpp − k
(in our case m = n = 3). This gives Eqn. 2 as follows:

Mpp = k (2)

In the case of horizontal planar fitting, where a plane defined
by a basis set of three data points, {(xi, yi, zi), i ∈ {0, 1, 2}},
Eqn. 2 expands to give the following formulation: 1 y0 z0

1 y1 z1
1 y2 z2

 dp
bp
cp

 =

 x0
x1
x2

 (3)

where M is composed of measured data points (yi, zi)
and a constant term, normalised to 1 (corresponding to plane
constant dp), k is a vector the coordinates of measured data
points xi (vertical depth within the volume) and pp is the
vector containing the parameters {bp, cp, dp} of the plane
(from Eqn. 1). Note that we empirically fix parameter ap of
Eqn. 1, ap = 1, due to horizontal constraint. Following from
the formulation of Eqn. 3 we derive the following system of
equations:

dp + bpy0 + cpz0 = x0
dp + bpy1 + cpz1 = x1
dp + bpy2 + cz2 = x2

(4)
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Figure 3. An original 3D CT baggage volume (left) and the same volume after density thresholding, τwater ± α (right)

Figure 4. Vertical sliding widow search for planes within the volume

where x is taken as a pivot because in our planar fitting case
we desire to fit a plane which is approximately parallel to the
x↔ y plane and hence perpendicular to the the y ↔ z plane
(inside the bounds of the sliding window, i.e. ±sw deviation in
y). The system shown in Eqn. 4 is resolved by minimization
of the error ‖ Mpp − k ‖= ε, derived from Eqn. 2 for an
error term, ε. Furthermore this can be expanded as follows, to
recover pp, such that:

argminpp ‖Mpp − k ‖ = argminpp ‖M
TMpp −MT k ‖

= argminpp ‖ pp − (MTM)−1MT k ‖(5)

As a result, we need only compute (MTM)−1MT k to
recover parameter vector pp, the unknown plane parameters,
pp = {bp, cp, dp}. This formulation is performed iteratively
from which the plane fit, parametrized as pp, with the minimal
error, ε, over N RANSAC iterations is selected within each
sliding window. Empirically we use N = 30, for each window
location within the vertical search (Figure 4) and a plane is
identified when the resulting fitting error is below a given
threshold, ε < τplane (normalized for volume size, τplane = 7,
i.e. ±7mm from the plane). An example of a plane, detected
within the CT volume shown in Figure 3, is shown in Figure 5.
In this example we see two views (Figure 5 A / B) of a plane
detected within the liquid density range voxels that remain
after pre-processing (Section III-A). This plane (shown top-
down Figure 5A) corresponds to the liquid surface of a bottle
object within the volume (shown side-on in Figure 5B).

C. 2D Elliptical Fitting

Our second stage of shape fitting identifies ellipses which
bound the possible liquid surfaces within the surface plane
identified in the previous stage of planar fitting. This choice of
an elliptical model for 2D fitting within the plane results from
the aforementioned property of the morphological lucidity of
the liquid to adapt to any given container. For example Figure
6 (right), a top view of two planar slices containing detected
liquid surfaces, shows that despite the variance in the primary
shape of given container (shown in blue in the Figure 6, right)
an ellipsoid model represents a good generalized bounding
model to circular, rectangular or indeed elliptical container
types.

Figure 6. Illustration of the liquid property to adapt to its container

From the comprehensive review of geometric elliptical
fitting in [14], we use a least squares technique that aims
to minimize the overall square error term between the ellipse
model and the corresponding data points. The general equation
for a 2D ellipse, with radii rmajor and rminor at centered at
position (h, k) with its major axis (corresponding to rmajor)
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Figure 5. An 3D plane detected within the remaining liquid density range voxels of Figure 3

at angle θ to the x-axis is defined as follows:

fellipse(x, y) =
((x− h) cos θ + (y − k) sin θ)2

(r2major)

+
((x− h) sin θ − (y − k) cos θ)2

(r2minor)

= 1 (6)

where we consider a 2D point (x, y) on an x ↔ y plane
(parametrized within plane identified III-B, separate from the
axis definitions of Section III-B) as being inside the ellipse for
fellipse(x, y) ≤ 1 and outside the ellipse otherwise. Expansion
of Eqn. 6 allows representation in implicit form as [14] such
that a given elliptical curve is represented as parameter vector,
pe = (ae, be, ce, de, ee, fe)

′, within the following:

F (pe; (x, y)) = aex
2 + bey

2 + cexy + dex+ eey + fe

= [x2, y2, xy, x, y, 1] � pe
= 0 (7)

From which we formulate a least squares solution to Eqn.
7 which minimizes the squared error term of the algebraic
distances, ε2, over the set of sample n points such that
ε2(pe) =

∑n
i=0 F (pe; (xi, yi))

2. This is then minimized
following [14] to determine the optimal least squares fit as
argpe

min(ε2(pe)).
Within our isolated 3D plane (Section III-B) elliptical fitting

is iteratively applied to a sub-set of the remaining planar data
points (after pre-processing, Section III-A) which correspond
to a consistent edge-tracked contour within this plane (using
[23]). Elliptical fitting is subsequently performed over this
identified set of contour points following [14], resulting in a
parametrized representation of each ellipse, pe, from which
we can recover the radii, angular offset and centre point,
{rmajor, rminor, θ, (h, k)} (Eqn. 6).

Empirically we observe that over a large range of exemplar
images, liquid containers do not vary significantly within the
characteristic and ratio of the minimum and the maximum
diameter elliptical fit. Hence we empirically filter the result-
ing set of ellipse instances by radii to contain only those
with {6.25mm < rminor < 75mm} and {28.75mm <
rmajor < 250mm} (based on the voxel sampling density in
millimetres (mm), Section IV). This results in a number of
identified ellipses within the plane over which we apply an

elliptical fill criterion to discriminate the true liquid surface
ellipses, corresponding to a region filled with liquid range
density values (Section III-A), from those fitted to coincident
noise patterns. For each remaining data point, (xi, yi) (within
the density range for liquids, isolated in Section III-A) we
apply Eqn. 6 populated with the corresponding parameters,
{rmajor, rminor, θ, (h, k)}, for each ellipse identified within
the plane to form a “point in ellipse” test. A fill ratio, η,
is then calculated as the number of sample points inside
a given ellipse against the total area of the fitted ellipse
(πrminorrmajor) with reference to the voxel sampling density
(in millimetres (mm), Section IV). Empirically, ellipses with
a filling ratio η ≥ 0.85 (85%) are retrained.

The key steps within this process are illustrated by example
in Figure 7. Here we see the original liquid density data
points within a plane (Section III-B) that have been retained
after pre-processing (Section III-A) in Figure 7A together with
the subset corresponding to tracked contours (Figure 7B), the
resulting ellipses recovered via fitting (Figure 7C) and those
that are retained after radii and fill filtering is applied (Figure
7D, red). It is noted that this combination of pre-fit filtering
based on contour connectedness and post-fitting filtering based
on radii and fill ratio criteria eliminates all of the non-liquid
ellipses within the example (Figure 7 A-D). Furthermore,
it should be noted that the pre-filtering is highly inclusive
in nature resulting in a significant number of liquid surface
candidates as a result of ellipse fitting itself (Figure 7C). It
is the later radii and fill ratio criteria that identifies the liquid
surface within this plane despite the fact it does not correspond
precisely to an elliptical shape (Figure 7D, red). This supports
the case for the use of a generalized elliptical model in the
identification of liquid container surface regions within 2D
volume slice images.

The ellipse identified within Figure 7D can be back-
projected for visualization within the original 2D plane iden-
tified in the 3D CT volume (Figure 8A, light blue) and
additionally back to the 3D CT volume itself (Figure 8B, light
blue). Within context, the visualization of the elliptical liquid
surface within Figure 8B, is illustrative of the type of image
overlay that could used for operator alerting within a multi-
stage baggage screening process incorporating 3D volume
visualization of the 3D CT scan imagery.
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Figure 8. Identified ellipse corresponding to liquid surface within the plane (A) back-projected into the original CT volume image (B)

Figure 7. Original liquid density data points within the plane (A) with
corresponding contours (B), resulting fitted ellipses (C) and those retained
after radii and fill filtering (D, highlighted in red).

IV. RESULTS

Results are presented detailing the performance of 3D planar
fitting (in isolation) and the combined use of 2D secondary el-
liptical fitting for liquid surface detection. These are presented
using a set of volumes with an original voxel sampling of

[1.6mm × 1.6mm × 5mm], subsequently re-sampled (using
cubic spline interpolation) to form cubic voxels of uniform
2.5mm sampling in all axes [7]. All data was gathered using
a CT-80 XL 3D baggage scanner manufactured by Reveal
Imaging Technologies.

Our experimentation has been performed over a homoge-
nous composition of physical baggage prepared for a range of
experimentation processes including recognized certification
trials [9], [10], [7], [8], [11]. The test baggage items contain all
manner of articles (clothes, shoes, electronics devices, liquids,
books, weapons and other domestics travel items). In order
to have a representative sample of common consumer liquid
containers within the baggage we include a large variety of
liquid types (water, soda, shampoo, hand gel, spray, milk,
toothpaste, etc). The liquids items were filled at different
levels (full, part filled, or almost empty) and also placed in
the baggage in varying positions to allow us to evaluate the
algorithm over a wide variety of baggage and liquid containers
configuration/orientations with the knowledge that the scan-
ning protocol (∼30 seconds per bag scan) is sufficient to let
any liquid reach a stable state (i.e. the surface of the liquid
to be horizontal to the ground plane). This protocol follows
current operational conditions for this scanner. Additionally a
set of clear bags with no liquid containers present were also
scanned to allow us to test for false positive detection.

Table I show the performance of the proposed technique
over a set of 100 baggage items, of which 15 items did
not contain any liquid containers (clear bags). These were
constructed as described with one or more liquid containers
within the non-clear baggage items. Results are shown (by
percentage) in terms of True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) detections
for both initial 3D planar fitting (result set A: to detect a plane
containing liquid surface(s) is within the volume) and with
additional subsequent 2D elliptical fitting (to localize liquid
container surfaces within that identified plane). For clarity:
• TP: a liquid surface is present within the volume and is

correctly detected as either a plane within the volume
(Table I, result set A) or is subsequently localized to the
correct liquid container within that plane (Table I, result
set B).

• TN: the volume contains no liquid surfaces and none are
detected as plane within the volume (Table I, result set
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Result Set True Positive (TP) True Negative (TN) False Positive (FP) False Negative
(FN)

Accuracy Precision Recall TNR

A: 3D Planar
Fitting (only)

98% 100% 0% 2% 0.99 1.00 0.98 1.000

B: 3D Planar
Fitting + 2D

Elliptical Fitting

85% (100%) 12% 3% 1.00 0.88 0.97 0.999

Table I
RESULTS OF 3D PLANAR FITTING AND 2D ELLIPTICAL FITTING FOR LIQUID SURFACE DETECTION

A).
• FP: the volume contains no liquid surfaces but one or

more are detected as plane within the volume (Table I,
result set A) or an ellipse is detected that corresponds to
a non-liquid surface item within a previously identified
plane (i.e. incorrect localization; Table I, result set B).

• FN: a liquid surface is present within the volume and is
either not detected as either a plane within the volume
(Table I, result set A) or is subsequently incorrectly
localized to the correct liquid container within that plane
(Table I, result set B).

As we can see from Table I (result set A), our approach
correctly detects the presence of a liquid surface within the CT
volume in 98% of cases (TP) and presents no FP detections
(via 3D planar fitting, Section III-B). FN are marginal (2%)
are corresponds to very small or dispersed (complex geometry)
liquid containers. From this set of detected liquid planes, our
second stage of detection (via 2D elliptical fitting, Section
III-C) correctly localizes the liquid surface within that plane
in 85% of cases (TP), completely misses the surface location in
3% of cases (FN) and incorrectly localizes it within the plane
in 12% of cases (FP) (Table I, result set B). Both approaches
perform favourably with respect to the conventional statistical
measures of accuracy, precision, recall and true negative rate
(TNR) which are defined as follows:-

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(8)

Precision =
tp

tp+ fp
(9)

Recall =
tp

tp+ fn
(10)

TrueNegativeRate (TNR) =
tn

tn+ fp
(11)

Overall we see high accuracy, precision and recall supported
by a high true negative rate that is indicative of the low false
alarm (i.e. FP) performance achieved (Table I).

Examples of missed liquid surfaces (FN) are shown in
Figure 9 where we see both examples of a failure within the
initial detection of the plane within the volume (Figure 9, left)
and also where ellipse localization within the plane has failed
(Figure 9, middle / right). Conversely, two FP liquid surface
ellipses are shown in Figure 10 where we see the coincidental
alignment of noise forming a consistent ellipse FP (Figure 10
left) and (Figure 10 right, leftmost ellipse instance). These
form part of the 12% FP that do not necessarily indicate a

poor result overall as, even if the shape of the liquid surface
is not highlighted with a fitted ellipse, the liquid surface still
appears on detected 3D plane. A range of successful liquid
surface detection (TP) are shown in Figure 11 where we see
successful localization of the liquid surface within the plane
extracted from the volume (Figure 11, left in red) and re-
projection back into the volume (Figure 11, right in light
blue). Figure 12 shows a wider range of TP detections, as
ellipses within the detected 3D plane (Figure 12, red) and also
examples where despite initial detection of the plane within
the volume, elliptical localization of the liquid surface within
the plane has failed (FN, Figure 12, blue).

Figure 9. Three examples of false negatives where a liquid surface was either
not detected as a plane within the volume (left) or as an ellipse within the
plane (middle and right).

Figure 10. Two examples of false positives liquid surface detection as an
ellipse within the plane.

V. CONCLUSIONS

We have developed an approach for automatic detection of
liquid surfaces within 3D CT baggage imagery which is based
on a two stage process of 3D planar fitting within the volume
and subsequent 2D elliptical fitting for localization within the
identified plane. This gives highly satisfactory results with
98% of planes containing liquid surfaces detected within the
volume and subsequently 85% of liquid surfaces subsequently
localized correctly within the plane. This detection of liquid
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Figure 11. Examples of true positive detection of liquid planes both as a
ellipse within the plane (right, red) and back-projected into the original CT
baggage volume (left, light blue).

present and it localization within the 3D CT volume is
achieved based on robust geometrical fitting, and 3D shape
understanding, without a dependence on exemplar training
data such as other contemporary approaches within the domain
[9], [10], [7], [8], [11], [20], [2]. Furthermore the 3D fitting
approach outlined extends prior work in the field [21] in terms
of stability to noise and surface variation with the addition of
second stage elliptical fitting. Overall the work has shown that
geometric approach to liquid detection without reference to an
explicit set of training data can provide a valuable solution
to liquid detection and voxalization within 3D CT baggage
imagery. Future work will examine the use of combined
planar and elliptic fitting in addition to integration with further
materials based discrimination techniques [2].
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