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Fig. 1: An example from the Dur360BEV dataset where (from left-to-right) see 3D bounding box annotation for LiDAR, an exemplar
LiDAR in Bird’s Eye View (BEV), the dual-fisheye image from our spherical camera and our semantic map based on OpenStreetMap.

Abstract— We present Dur360BEV, a novel spherical camera
autonomous driving dataset equipped with a high-resolution 128-
channel 3D LiDAR and a RTK-refined GNSS/INS system, along
with a benchmark architecture designed to generate Bird-Eye-
View (BEV) maps using only a single spherical camera. This
dataset and benchmark address the challenges of BEV generation
in autonomous driving, particularly by reducing hardware com-
plexity through the use of a single 360-degree camera instead of
multiple perspective cameras. Within our benchmark architecture,
we propose a novel spherical-image-to-BEV module that leverages
spherical imagery and a refined sampling strategy to project
features from 2D to 3D. Our approach also includes an innovative
application of focal loss, specifically adapted to address the
extreme class imbalance often encountered in BEV segmentation
tasks, that demonstrates improved segmentation performance on
the Dur360BEV dataset. The results show that our benchmark
not only simplifies the sensor setup but also achieves competitive
performance.
Code + Dataset: https://github.com/Tom-E-Durham/Dur360BEV

I. INTRODUCTION

A spherical dual-fisheye camera, provides a full field of view
(FoV) with dual fisheye lenses, capturing the entire environment
in a single frame with just one device. This minimalist sensor
setup offers a streamlined alternative to multi-camera systems.
It is particularly well-suited for applications like autonomous
driving, where a single spherical camera ensures full situational
awareness while reducing hardware complexity, such as the
need for multi-sensor calibration, synchronization, and connec-
tivity [1], [2], [3], [4].

While this setup simplifies the hardware, it introduces new
challenges for image processing due to the significant radial
distortion inherent in fisheye lenses. Previous studies [5],
[6] have attempted to adapt pre-trained models designed for
perspective images to fisheye images through techniques like
rectification [7] and data augmentation [8], but these methods
often fall short in addressing the distortion. More recent

work [9] demonstrates the effectiveness of convolutional
neural networks (CNN) specifically designed for fisheye
images, capturing detailed spatial information from a single
spherical camera. However, utilizing this single-sensor data
for generating accurate and reliable top-down views, such
as bird’s-eye view (BEV) maps, remains an area requiring
further exploration.

BEV maps are essential for autonomous driving, as they
provide a unified top-down representation of the environment
that helps in sensor fusion [10], [11], motion forecasting [12],
[13], and trajectory planning [14], [15]. These maps integrate
raw sensor data into a format that is interpretable for
downstream tasks, improving the system ability to predict
vehicle motion [16], [17] and plan paths [18] effectively.
Achieving accurate BEV maps requires the system to interpret
spatial relationships within the scene and resolve issues related
to distortion and occlusion, especially when relying solely
on a single spherical camera.

While spherical imagery has been applied in previous
research on tasks such as depth estimation [6], [9], [19], the
research direction of generating BEV maps using only a
single spherical camera has not been thoroughly investigated.
Most existing approaches [20], [17], [21], [22], [23] depend
on multiple-camera setups to mitigate challenges related to
limited FoV. The reliance on additional sensors such as
LiDAR [24] and radar [25] further complicates system inte-
gration and increases cost, highlighting a gap for approaches
that focus on minimising hardware (sensor) complexity and
cost while maintaining overall perception performance.

We address this gap by proposing the first approach to
generate BEV maps from a single spherical camera in the
context of autonomous driving. To achieve this, we have
collected the first autonomous driving dataset specifically
featuring a single spherical camera image. Furthermore, we
introduce a benchmark architecture that enables the generation



of BEV maps using only one camera, providing a streamlined
and efficient solution for autonomous driving applications.
Overall, our contributions can be summarized as follows:

– A novel large-scale real-world autonomous driving
dataset comprising a (360°) spherical RGB camera, a
high-fidelity 3D LiDAR (128 channels), and a GNSS/INS
system. The first autonomous driving dataset with fully
3D bounding box annotation that features spherical
camera modality.

– A benchmark for generating BEV maps from spherical
images, with a novel spherical-image-to-BEV module
that handles spherical distortions and maps 2D features
onto a 3D sparse volume for accurate BEV representa-
tion.

– We introduce the use of focal loss, originally developed
for object detection, as an innovative approach to address
the extreme class imbalance in BEV segmentation. Our
experiments demonstrate that this novel application of
focal loss significantly improves segmentation perfor-
mance, validating its effectiveness in the BEV domain.

II. RELATED WORK

We consider prior work in two related topic areas: autonomous
driving datasets (Section II-A) and vision based BEV model
(Section II-B).

A. Autonomous Driving Datasets

For autonomous driving, real-world datasets are crucial and
numerous have been published in recent years.
Real dataset vs. synthetic dataset. Autonomous driving
datasets can typically be categorised into two types: real-
world datasets [1], [29], [2], [3], [31], [4], [30] and synthetic
datasets [27], [26], [28]. Acquiring a real-world outdoor dataset
requires considerable effort, including sensor setup, route plan-
ning, and data post-processing. Conversely, synthetic datasets
generated from simulators offer comparable information with
advantages such as time efficiency, cost savings and flexible
data configurations-allowing for customized camera setups,
precise 3D location data, and detailed annotation information
[32], [33], [34]. However, they often lack the realism and
unpredictability of real-world data, which can lead to gaps
in model robustness and overfitting to specific characteristics of
the synthetic environment [35], [36]. To address these issues,
secondary solutions like domain adaptation techniques are
often employed to bridge the gap and make models trained
on synthetic data applicable to real-world scenarios [37], [38],
[39]. Additionally, the absence of sensor noise and artifacts
in synthetic datasets may result in models that struggle when
applied to noisy real-world data [40].
Perspective cameras vs. fisheye cameras. Cameras are
essential sensors for autonomous driving and in both real
and synthetic datasets, different types of cameras can be
configured. For example, datasets such as KITTI [1], Waymo
[2], and nuScenes [3] predominantly use perspective (pin-
hole) cameras to equip their vehicles. In nuScenes [3], five
perspective cameras are used alongside a fisheye camera
positioned at the rear of the vehicle. In contrast, datasets

such as KITTI-360 [30] and WoodScape [29] rely exclusively
on fisheye cameras, equipping their vehicles with multiple
fisheye lenses. Fisheye lenses offer a significant advantage
due to their wide FoV, allowing for 360-degree horizontal
coverage with fewer cameras. For example, nuScenes [3]
employs six cameras to achieve a 360-degree visual coverage,
whereas WoodScape [29] requires four fisheye cameras, and
KITTI-360 [30] manages with only two. However, no dataset
to date has utilised a single spherical camera in place of all
other cameras and achieved comprehensive 360-degree visual
information specifically targeting BEV recovery.

B. Vision-based BEV Approaches

In autonomous driving, BEV map is useful for tasks such as
object detection, path planning, and scene understanding. This
process typically involves using multiple cameras positioned
around the vehicle to capture the environment from various
angles. The primary challenge is transforming 2D image
data into a coherent 3D representation that can be accurately
projected onto a BEV map. To address this challenge, several
methods have been developed to lift 2D image features into
3D space before projecting them into a BEV map.

1) Multiple Perspective Camera Models: LSS [20] pi-
oneered the concept of lifting 2D features into 3D space
before splatting them into a BEV map. This method laid the
foundation for subsequent advancements in BEV generation.
FIERY [17] expanded upon this approach by integrating a
multi-task framework, which uses uncertainty weighting to
balance three critical sub-tasks: centerness, segmentation,
and offset. SimpleBEV [25] further optimized the lifting
strategy by introducing a bilinear-subsampling technique,
which replaces the need for predicting depth distribution.
PointBEV [23] improved upon this process by employing a
coarse-to-fine mechanism, which reduces the indexing size
during the lifting phase. These methods all rely on input
from six surrounding-view cameras to generate feature maps,
leading to more accurate and efficient BEV representations
for downstream applications in autonomous driving.

2) Multiple Fisheye Camera Models: While the majority
of BEV models have focused on perspective camera setups,
there has been growing interest in leveraging fisheye cameras
due to their wide field of view. F2BEV [28] is one of
the few models that specifically addresses the challenges
of generating BEV maps from multiple fisheye cameras.
This approach is particularly advantageous for capturing a
360-degree view with fewer cameras, though it introduces
additional complexities in handling the severe radial distortion
inherent to fisheye lenses.

III. DUR360BEV DATASET

We introduce the first ever dataset that aims to use a single
camera to solve real-world tasks in autonomous driving. Our
dataset represents a shift towards the future of autonomous
driving, where traditional systems often rely on an array of
sensors, such as multiple cameras, LiDAR, and radar, working
in tandem. By focusing on a single 360-degree camera, our ap-
proach not only simplifies the hardware setup but also reduces



Dataset Real/Synthetic Frames FPS Camera LiDAR GPS

SynWoodScape [26] Synthetic 80K 10Hz 4 fisheye cams No No
OmniScape [27] Synthetic 10K N/A 2 fisheye cams No No
FB-SSEM [28] Synthetic 20K 2Hz 4 fisheye cams No No
WoodScape [29] Real 10K N/A 4 fisheye cams 64-channel GPS only
KITTI [1] Real 15K 10Hz 1 stereo cam 64-channel GPS only
KITTI-360 [30] Real 78K N/A 1 stereo + 2 fisheye cams 64-channel GPS only
Waymo [2] Real 198K 10Hz 5 perspective cams 32-channel GPS only
nuScenes [3] Real 40K 1Hz 5 perspective + 1 fisheye cams 32-channel GPS+RTK refined
Lyft L5 [31] Real 46 1Hz 7 perspective cams 32-channel GPS only
DurLAR [4] Real 0 N/A 1 stereo cam 128-channel GPS only
Dur360BEV (ours) Real 32K 10Hz 1 spherical cam 128-channel GPS+RTK refined

TABLE I: Comparison between existing datasets (N.B. columns ‘Frames’ and ‘FPS’ in represent the frames labelled with 3D bounding
box annotations and the frequency of these annotated frames in the dataset respectively; ‘N/A’ means that the information is not provided
or the dataset has no annotation).

the complexity, cost, and power consumption of on-vehicle
perception systems. Our Dur360BEV dataset comprises:
• HD 360-degree camera imagery in raw dual-fisheye format,
where each pair of fisheye images are calibrated and can be
in either equirectangular or cubemap formats.
• Annotated dense LiDAR pointclouds which has the
resolution of 128×2048 and 3D bounding box annotation for
vehicle, pedestrian and bicycles.
• RTK-corrected GNSS/INS positioning delivering excep-
tional accuracy, providing at most centimeter-level position
data and high-precision vehicle attitude measurements, with
0.03° accuracy in pitch/roll and 0.15° in slip angle, ensuring
not only highly reliable vehicle localization but also precise
self-attitude assessment.
• A High-Detail Semantic Map, constructed using Open-
StreetMap (OSM) in a geospatial database format, providing
detailed environmental information surrounding the ego
vehicle, as illustrated in Figure 1. The use of OSM ensures
that the database remains flexible and up-to-date, benefiting
from ongoing contributions by the OSM community.
• Ground truth BEV segmentation map which contains
object and map tile information in the local environment
around the ego vehicle.

A comparison between existing datasets is shown in Table
I. Our Dur360BEV dataset has the highest resolution in terms
of the LiDAR sensor, a relatively high annotated FPS and is
the only autonomous dataset that provides single spherical
camera images.

A. Sensor Setup

The dataset is collected by a spherical camera, a high-
resolution LiDAR and a GNSS/INS navigation system cali-
brated and equipped on a Renault Twizy vehicle. The details
of the sensor is shown in Table II and the setup is illustrated
in Figure 3.

B. Data Collection and Process

We collect data from various locations to ensure the dataset
encompasses a diverse range of vehicles and traffic conditions.
Specifically, we conduct data collection in four distinct areas
of Durham, UK: the campus, highway, city center, and
residential neighborhoods. These areas effectively represent

Sensor Details

Camera Spherical dual-fisheye camera (i.e., 360-degree camera,
model: Ricoh Theta S), dual 1/2.3” 12M CMOS
sensor, RGB image, 15Hz capture frequency, 1280x640
resolution, auto exposure, JPEG compressed, factory
calibrated.

LiDAR Ouster OS1-128 LiDAR sensor, 128 channel as vertical
resolution, 2048 horizontal resolution, 10Hz capture
frequency, 360 degree HFOV, -21.2 to 21.2 degree
VFOV, 120m range @ > 50% detection probability,
100m range @ > 90% detection probability, 0.3cm
range resolution.

GNSS/INS OxTS RT3000v3 global navigation satellite and inertial
navigation system, 100Hz capture frequency, 0.03
pitch/roll accuracy, 0.15 slip angle accuracy, centimeter
level accuracy (with RTK corrections received via
NTRIP).

TABLE II: Sensor details in Dur360BEV.

Cam & LiDAR

GNSS/INS

X-axis
Y-axis
Z-axis

Fig. 3: Sensor placement. Left: the top view of the vehicle equipped
with sensors. Right: our spherical camera on top of the LiDAR.
Both figures show the coordinates space for each sensor.

the vast majority of driving environments across the UK. They
include both straightforward scenarios, such as on highways
where vehicle movements are relatively steady without parked
cars on the roadside, and more challenging situations, such
as in non-highway areas where vehicles might be parked in
varying positions, and traffic patterns on the road become
more complicated to predict due to additional traffic rules.
Data synchronisation: Given the inherent asynchrony in
the data streams generated by different sensors operating at
varied frequencies, we utilise the Robot Operating System
(ROS Noetic) to achieve temporal alignment across different
data sources based on their timestamps. The LiDAR, with its
lower frame rate, serves as the reference sensor. We employ a



synchronisation strategy that uses a queue size of 20 to handle
incoming sensor messages and a slop parameter setting of
0.03 seconds to match messages from different sensors within
this time window. This approach synchronises the dataset
at 10 Hz, allowing for slight temporal discrepancies while
ensuring accurate and coherent data integration, balancing
the precision of alignment with the likelihood of successful
message pairing.
3D bounding box annotations were labeled using a combina-
tion of automated and manual processes on the Xtreme1 open-
source annotation platform [41]. The high-resolution LiDAR
sensor used in our setup facilitates both automated detection
and manual labeling, as the dense point cloud data makes it
easier for the model to detect objects and for human annotators
to accurately label them. Initially, an integrated LiDAR object
detection model was employed on the platform, successfully
identifying approximately 60% of the 3D bounding boxes
for objects. Each bounding box annotation includes detailed
data such as the 3D coordinates of the center, the rotation
along the X, Y, and Z axes, the size of the bounding box in
three dimensions, the sensor distance, and the annotated point
amount. Following the automated process, an experienced
data annotator meticulously reviewed and manually annotated
the remaining objects within a 100m× 100m square area
centered around the ego vehicle. The dataset is at a frequency
of 10 Hz, and objects are labelled into three distinct classes:
vehicle, pedestrian, and bicycle.

C. Spherical Imagery

The proposed Dur360BEV dataset is the first to provide
single spherical camera imagery specifically for autonomous
driving tasks. Unlike previous datasets, such as nuScenes [3]
and Waymo [2], which use multiple perspective cameras,
or KITTI-360 [30] and WoodScape [29], which rely on
numerous fisheye cameras to capture 360-degree horizontal
imagery, our approach utilizes a single spherical camera
to achieve comprehensive coverage. This reduces both the
number of sensors required and the input data size for models
in this domain. As shown in [25], while increasing input
resolution in BEV model training on the nuScenes dataset
can improve performance to some extent, it also significantly
increases processing time, which is not ideal for real-time
autonomous driving applications.

Our spherical imagery is crucial for calibrating the spherical
camera with LiDAR data, enabling the accurate identification
of corresponding pixels in an image based on the point
cloud from the same frame. In practice, we find the best
result by projecting 3D Cartesian coordinates (X ,Y,Z) onto
spherical dual-fisheye image coordinates (u,v) using a fourth-
order polynomial transformation. First, the 3D coordinates are
converted into spherical coordinates, where the azimuth angle

θ = arctan2(Y,Z) and the polar angle φ = arctan
(√

Y 2+Z2

X+ε

)
are calculated. The polar angle φ is then mapped to a radius
r(φ) using the piecewise function:

r(φ) = a4φ
4 +a3φ

3 +a2φ
2 +a1φ +a0, (1)

where a0,a1,a2,a3,a4 represent the coefficients of the poly-
nomial that are determined through calibration to best fit the
mapping between the spherical coordinates and the image

plane. The 2D image coordinates r =
(

x
y

)
are then computed

as:

r = r(φ)
(

cos(θ)
sin(θ)

)
. (2)

Map the points from the front and back of the camera to
their corresponding positions on the dual-fisheye image:

x =

{
x+1

2 , if X > 0,
x−1

2 , if X ≤ 0.
(3)

Let H and W denote the height and width of the image,
respectively. The pixel coordinates (u,v) are then given by
the following expressions:

u =
x+1

2
·W, v =

−y+1
2

·H, (4)

avoiding any out-of-bounds coordinates:

udist = clip(u,0,W −1), vdist = clip(v,0,H −1). (5)

IV. METHODOLOGY

To leverage the advantages of the Dur360BEV dataset, we
propose a novel benchmark task that takes spherical images
as input to generate BEV map of the scene. Our benchmark
architecture can be divided into two parts: Spherical-image-
to-BEV module (Section IV-A) and multi-task framework
with focal loss (Section IV-B).

A. Spherical-Image-to-BEV module

As we replace the six input camera images used in previous
work [20], [17], [21], [22], [25], [23] with a single spherical
camera to simplify the hardware setup and reduce redun-
dancy, the conventional image-to-feature module is no longer
applicable to our dataset. To address this, we introduce a
novel application of the spherical-image-to-BEV module. This
new module is specifically designed to handle the unique
challenges posed by spherical imagery.

Building upon the foundational ideas in [23], our approach
begins by feeding an RGB spherical image, with dimensions
3×H ×W , into a backbone network. This network outputs a
feature map I ∈ RC×H×W , where C,H,W ∈ N represent the
number of channels, height, and width of the feature map,
respectively. Unlike traditional setups, which are tailored
for perspective images from multiple cameras, our method
is adapted to process the entire 360-degree field of view
captured by a single spherical camera.

The backbone network extracts key features from the
spherical image, which are then refined through a specifically
tailored two-stage coarse-to-fine sampling strategy. This
strategy is centered around what we call the Feature Pulling
Process, which has been adapted to accommodate the distinct
geometric properties of spherical images. By re-engineering
the sampling geometry and refining the feature extraction
process, we ensure that the module effectively captures



and projects the spherical image features onto a BEV map,
achieving accurate and reliable results.
The Feature Pulling Process begins by taking a set of prede-
fined 2D BEV points and generating pillars, each composed of
3D points with dimensions Npoints ×3, where Npoints represents
the number of points sampled in this step. These 3D points
are evenly spaced along the vertical axis in the BEV space.
They are then projected onto the camera feature maps derived
from the 360-degree imagery. Bilinear interpolation is applied
to sample the corresponding 2D features, resulting in a high-
dimensional feature volume with dimensions Npoints ×C. This
feature volume is then processed by a decoder, such as a sparse
U-Net, which compresses the features onto the 2D BEV plane,
generating initial BEV predictions.
Coarse sampling applies the Feature Pulling Process to a
broader set of 2D BEV points, generating a sparse 3D volume
with dimensions Ncoarse ×3. The resulting BEV predictions
are used to identify high-confidence regions—those with the
highest logit values—which are selected as anchor points.
Fine sampling then applies the Feature Pulling Process again
based on the 3D points generated around the anchor points
selected during the coarse sampling. This produces a refined
feature volume with dimensions Nfine ×C, which focuses on
enhancing the representation of critical regions. The outputs
from the fine stage are combined with those from the coarse
stage to produce a final, densified BEV map.

The coarse-to-fine sampling strategy plays a crucial role in
efficiently generating BEV maps by focusing computational
resources on high-confidence regions in our spherical images,
thereby potentially alleviating class imbalance issues to some
extent. However, to further enhance the ability of the model
to handle severe class imbalance, we integrate focal loss [42]
into our training process.

B. Multi-Task Framework and Loss Functions

Following the Multi-Task Framework [17], our bench-
mark architecture incorporates three specialized segmentation
heads—i.e., centerness, offset, and segmentation—each target-
ing a distinct aspect of the BEV map prediction. The centerness
head predicts the likelihood of a location being the center of
an object, the offset head estimates the spatial displacement
from a predefined anchor point, and the segmentation head
differentiates between foreground and background regions in
the BEV map. For the centerness and offset tasks, we utilize
a balanced mean squared error (MSE) loss and an absolute
error loss, respectively. Given the significant class imbalance
between foreground and background in BEV maps, we
specifically apply focal loss [42] to the segmentation head to
enhance model focus on difficult-to-classify regions.

Focal loss extends the standard cross-entropy (CE) loss,
which is commonly used for binary classification. The cross-
entropy loss is defined as CE(p,y) = CE(pt) = − log(pt),
where y ∈ 0,1 denotes the ground-truth label, and p ∈ [0,1]
represents the predicted probability for the positive class
(y = 1). For uniformity, we define pt as:

pt =

{
p, if y = 1,
1− p, otherwise. (6)

One of the key challenges in training models for tasks like
BEV segmentation is that standard cross-entropy loss tends
to be dominated by straightforward examples, potentially
overwhelming rare classes with small loss values. To better
handle this, focal loss modifies the loss function by reducing
the contribution of these simpler examples, thereby shifting
the focus of training towards harder negatives. This is achieved
by introducing a modulating factor (1− pt)

γ with a tunable
parameter γ ≥ 0, leading to the focal loss formulation:

FL(pt) =−(1− pt)
γ log(pt). (7)

This approach effectively reduces the influence of simpler
classified examples, allowing the model to concentrate on
learning from more challenging cases, which is crucial for
handling imbalanced data in tasks like BEV segmentation.

V. EXPERIMENTS

In this section, we outline the experimental setup used
to evaluate our proposed SI2BEV module. We conduct
a comparative analysis of two sampling strategies: dense
grid sampling [25] and a combination of sparse and dense
sampling [23], specifically focusing on their performance
within our SI2BEV module on the Dur360BEV dataset.
Additionally, we investigate the impact of varying the gamma
parameter in the focal loss on BEV task performance.

A. Experimental Setup

Dataset: Our experiments are conducted on the Dur360BEV
dataset, a challenging real-world spherical image dataset
tailored for autonomous driving applications. It consists of
16.4k point cloud frames, with 14.7k frames used for training
and 1.6k for validation. The vehicle class is selected for
training and evaluation.
Evaluation Protocol: Ground truth BEV maps are generated
using the 3D bounding box annotations for the vehicle class.
Pixels within these bounding boxes on the BEV map are
labeled as positive, while all other pixels are labeled as
negative. The evaluation metric is Intersection over Union
(IoU), defined as the ratio of the overlap between predicted
and ground truth positive regions to their union. Higher IoU
values reflect better alignment and model performance.
Implementation Details: For all experiments, the proposed
architecture is trained over 4k iterations, each with 5 batches,
using the AdamW optimizer [43], with a learning rate of
λ = 5e−5, weight decay w = 10−7, and a 1-cycle learning
rate schedule [44]. We closely monitor the validation loss
throughout the training process, which consistently decreases
to converge at a stable point, as shown in Figure 4. This
convergence was achieved within the set 4000 iterations,
beyond which the residuals of the loss function showed
minimal change. The results confirm that the model effectively
learns and stabilizes within this iteration limit, demonstrating
the efficiency and reliability of our approach.



Fig. 4: Validation loss curves for different values of γ . From top
to bottom: γ = 0.2,0.4,0.8,0.6,1,2,5. The curves illustrate how the
choice of γ influences the convergence behavior during training.

B. Compare sampling strategies

We compare performance between the sparse/dense strategy
proposed in our architecture and the dense grid sampling
strategy used in SimpleBEV [25]. Both methods are designed
to detect objects within a 100m×100m grid with a 50cm
resolution resulting in a 200×200 BEV map.

For a fair comparison, both sampling strategies were
trained under identical conditions. The comparison results
are summarized in Table III. It is important to note that when
γ = 0, the focal loss simplifies to a standard Binary Cross
Entropy (BCE) loss.

As observed in Table III, focal loss significantly enhances
performance across both sampling strategies. The Dense
Grid strategy shows a notable improvement in IoU by
+1.6 at the 100m range, while the Coarse/Fine strategy
achieves a +1.1 increase in IoU. These results highlight the
effectiveness of focal loss in addressing class imbalance,
particularly over extensive spatial ranges, thereby improving
the accuracy of BEV segmentation. When considering the
model complexity, the Coarse/Fine sampling strategy with
a γ = 2 setup demonstrates the best overall performance,
balancing both IoU improvement and model efficiency, as
shown in Table IV. The qualitative visualisation of the result
for this optimal setup is presented in Figure 5.

VI. CONCLUSIONS

We introduce Dur360BEV, the first large-scale autonomous
driving dataset to feature a spherical RGB camera, high-
fidelity 128-channel 3D LiDAR, and fully 3D annotated
bounding boxes. This dataset simplifies hardware complexity
while maintaining rich environmental data, advancing the
state-of-the-art in BEV recovery for autonomous driving.

We also develop a benchmark architecture with the
Spherical-Image-to-BEV (SI2BEV) module, effectively ad-
dressing the challenges of spherical imagery to produce
accurate BEV maps. Our experiments further demonstrate
that the incorporation of focal loss significantly enhances
BEV segmentation performance, particularly in addressing
class imbalance inherent in 360-degree camera datasets. This
underscores the importance of considering class imbalance

Strategy γ Backbone IoU100 IoU50 IoU20 Eff. Score

Dense Grid 5 RN-101 30.7 37.9 39.3 0.73
Dense Grid 2 RN-101 31.5 38.3 39.9 0.75
Dense Grid 1 RN-101 32.7 40.4 42.0 0.78
Dense Grid 0 RN-101 31.1 37.0 38.5 0.74
Coarse/Fine 5 EN-b4 26.9 34.3 36.8 3.20
Coarse/Fine 2 EN-b4 32.6 40.3 41.6 3.88
Coarse/Fine 1 EN-b4 28.9 36.3 39.4 3.44
Coarse/Fine 0 EN-b4 31.5 38.9 39.7 3.75
Coarse/Fine 0.8 EN-b4 29.5 36.7 37.6 3.51
Coarse/Fine 0.6 EN-b4 27.5 35.2 37.4 3.27
Coarse/Fine 0.4 EN-b4 31.0 38.3 40.0 3.69
Coarse/Fine 0.2 EN-b4 31.0 38.4 40.3 3.69

TABLE III: Comparison the BEV vehicle segmentation on
Dur360BEV dataset between two sampling strategies. Computed
on the validation split at different values of γ parameter in focal
loss. ‘EN-b4’ and ‘RN-101’ stand for EfficientNet-b4 [45] and
ResNet101 [46] respectively. IoU100, IoU50, IoU20 represent the
IoU scores for the BEV maps in range 100m, 50m and 20m
respectively. The ‘Eff. Score’ represents the ratio of the IoU100
to the number of parameters (in millions). All the model are trained
on Dur360BEV training split, with batch size=6, learning rate=5e-5
and iterations=4000 for fairness.

Strategy C IoU100 C:IoU100

Dense Grid (γ = 1) 42.04 32.7 0.777
Coarse/Fine (γ = 2) 8.40 32.6 3.881

TABLE IV: The model complexity is calculated by the ratio of the
IoU to the number of model parameters (C) in millions.

Fig. 5: The inference visualisation of the Coarse/Fine sampling
strategy and focal loss with γ = 2 on Dur360BEV validation split.
Left: Input image; Middle: Prediction; Right: Ground Truth Map.

when generating BEV maps, especially in challenging en-
vironments. Collectively, our contributions provide robust
tools and methodologies that enhance the development of
autonomous driving technologies using a simpler low-cost,
low-power sensing option.
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