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Abstract

We present the first cross-modality distillation framework
specifically tailored for single-panoramic-camera Bird’s-
Eye-View (BEV) segmentation. Our approach leverages a
novel LiDAR image representation fused from range, inten-
sity and ambient channels, together with a voxel-aligned
view transformer that preserves spatial fidelity while en-
abling efficient BEV processing. During training, a high-
capacity LiDAR and camera fusion Teacher network ex-
tracts both rich spatial and semantic features for cross-
modality knowledge distillation into a lightweight Stu-
dent network that relies solely on a single 360-degree
panoramic camera image. Extensive experiments on the
Dur360BEV dataset demonstrate that our teacher model
significantly outperforms existing camera-based BEV seg-
mentation methods, achieving a 25.6% IoU improvement.
Meanwhile, the distilled Student network attains competi-
tive performance with an 8.5% IoU gain and state-of-the-
art inference speed of 31.2 FPS. Moreover, evaluations on
KITTI-360 (two fisheye cameras) confirm that our distilla-
tion framework generalises to diverse camera setups, un-
derscoring its feasibility and robustness. This approach re-
duces sensor complexity and deployment costs while provid-
ing a practical solution for efficient, low-cost BEV segmen-
tation in real-world autonomous driving. The code is avail-
able at: https://github.com/Tom-E-Durham/
KD360-VoxelBEV .

1. Introduction

Bird’s-Eye-View (BEV) representations play a crucial role
in autonomous driving, offering a top-down perspective that
greatly simplifies sensor fusion [24, 30, 42, 49] and benefits
downstream tasks such as detection [25, 28, 50], segmenta-
tion [3, 4, 15, 17, 33], motion forecasting [10, 51], and nav-
igation planning [18, 36]. While most BEV generation ap-
proaches rely on multi-camera solutions [3, 4, 15, 25, 48],
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Figure 1. Overview of cross-modality channel-wise knowledge
distillation from fused LiDAR–camera features (Teacher) to a sin-
gle 360-degree camera model (Student) for enhanced feature rep-
resentation and scene understanding.

the simultaneous deployment of multiple sensors introduces
significant hardware complexity and cost. In contrast, a sin-
gle 360-degree camera must distribute its finite number of
pixels across the entire panorama, leading to lower per-pixel
density and reduced feature quality [9, 34, 45]. This resolu-
tion constraint poses additional challenges for downstream
tasks like BEV segmentation, which rely on precise object
boundaries and detailed spatial cues.

Recent advances show that scaling backbone depth can
mitigate low-resolution inputs by extracting richer fea-
tures [4, 15]. However, accuracy gains quickly plateau
with model size, incurring prohibitive compute, latency,
and on-vehicle energy costs for real-time deployment.
In parallel, LiDAR supplies high-fidelity 3D measure-
ments [37] and multimodal fusion (camera+LiDAR/radar)
attains strong performance [26, 28]; yet keeping LiDAR ac-
tive at inference introduces substantial cost, maintenance,
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and size/weight/power burdens, limiting large-scale feasi-
bility. This raises a practical question: can we exploit Li-
DAR during training while discarding it at deployment?

We address this with KD360-VoxelBEV, a cross-
modality distillation framework that leverages LiDAR for
training but relies only on a single camera at inference. Un-
like existing cross-modality distillation works in BEV de-
tection or HD map construction [5, 14, 20, 22, 46], our
focus is on the under-explored single panoramic camera
BEV segmentation setting, where the 360-degree equirect-
angular geometry and the low-resolution constraint intro-
duce unique challenges that prior multi-camera methods do
not address. We introduce a high-capacity Teacher network
that fuses LiDAR and camera features in BEV space via a
soft-gated mechanism, while our LiDAR representation and
voxel-aligned projection ensure that LiDAR-derived fea-
tures retain both geometric fidelity and compatibility with
2D backbones. In contrast to existing approaches [14, 52]
that enforce direct alignment across different modalities
and often yield suboptimal results, our module employs
Soft-Gated Fusion Module (SGFM) to reduce representa-
tion discrepancies and further introduces an Auxiliary Mod-
ule (AM) to provide additional distillation signals, thereby
facilitating faster convergence of the Student. These fused
features supervise a lightweight camera-only Student, en-
abling deployment-friendly BEV segmentation without sac-
rificing accuracy.

We primarily develop and evaluate KD360-VoxelBEV on
Dur360BEV [9], the latest real-world 360◦ single-camera
dataset with the highest-resolution LiDAR among existing
benchmarks. To further test generalisation, we also con-
duct experiments on KITTI-360, which provides two fish-
eye cameras with full 360-degree coverage.

The main contributions of this work are as follows:

• We propose KD360-VoxelBEV, the first cross-modality
distillation framework for BEV segmentation, where the
SGFM integrates LiDAR and camera features in the
Teacher, providing strong multimodal supervision to a
lightweight panoramic camera-only Student.

• We introduce a novel voxel-aligned view transformer that
preserves the geometric fidelity of LiDAR while remain-
ing compatible with efficient 2D backbones, thereby com-
bining the accuracy of voxel-based encoders [55] with the
efficiency of pillar-based designs [23].

• We design a unified panoramic LiDAR image representa-
tion, co-parameterised with equirectangular camera im-
agery, which ensures consistent cross-modal alignment
and efficient 2D processing. In conjunction with the
voxel-aligned view transformer, this representation en-
ables a strong BEV Teacher and supports robust cross-
dataset distillation.

2. Related Work
We consider prior work in two related topic areas: BEV
segmentation (Section 2.1) and cross-modality knowledge
distillation (Section 2.2).

2.1. BEV Segmentation
BEV segmentation maps provide a view of the environ-
ment for tasks such as scene understanding, path planning
and motion prediction [18]. Moreover, BEV representa-
tions fuse data from multiple sensors (e.g., LiDAR, camera,
radar) [28, 35, 44, 53]. BEV methods differ mainly in their
inputs: image-based approaches rely solely on camera data,
while multi-modality methods integrate additional sensors.

2.1.1. Image-Based vs. Multi-Modality BEV Approaches
Most image-based BEV methods rely on multi-camera se-
tups, typically employing six cameras, to provide a com-
plete 360-degree surround view around the vehicle. This
configuration offers high-definition views in all directions
and provides dense semantic information. However, the
multi-camera approach increases the memory requirements
for data input and may introduce inter-view redundancy. In
contrast, a single 360-degree camera input reduces the input
data memory requirements while still capturing sufficient
scene context. Other works fuse multiple sensors, such as
LiDAR and radar, to enhance the performance of BEV seg-
mentation by providing point cloud.

Image-Based BEV: Recent work includes LSS [33],
which employs an end-to-end pipeline that transforms
multi-view camera images into a unified BEV representa-
tion by implicitly unprojecting 2D features to 3D space.
FIERY [17] refines this by applying a multi-task frame-
work with uncertainty weights and a probabilistic model
for predicting future instance segmentation and motion
in BEV. BEVFormer [25] and its updated version BEV-
FormerV2 [48] adopt transformer-based architectures to ef-
fectively fuse multi-view inputs, demonstrating the poten-
tial of more complex models in generating rich BEV rep-
resentations. SimpleBEV [15] introduces a parameter-free
feature pulling method to replace the need for predicting
depth distribution, whilst PointBEV [4] presents a novel
sparse paradigm to replace the dense grid sampling method,
which offers flexible memory/performance trade-offs. Fur-
thermore, GaussianBEV [3] applies an optimisation free 3D
Gaussian generator to transform image feature map into 3D
Gaussians. Related monocular depth estimation work lever-
ages semantic segmentation priors to regularise single-view
3D reconstruction [1].

Multi-Modality BEV: Several approaches improve BEV
segmentation by incorporating additional sensors beyond
cameras. For instance, SimpleBEV [15] enhances perfor-
mance by down-sampling radar and LiDAR data into grid



representations, which are then concatenated with RGB fea-
tures. Similarly, BEVFusion [28] uses a LiDAR encoder to
extract features that are flattened along the z-axis before
merging with RGB features in BEV space. While these
fusion methods boost segmentation performance, they in-
troduce extra processing steps that increase computational
load and may slow inference, posing challenges for real-
time deployment. Additionally, PointBEV [4] departs from
conventional fusion methods by proposing a coarse and
fine training using flattened LiDAR data as sample points.
These 2D BEV points then serve as sample locations for
constructing 3D pillars of fixed height for sparse feature
extraction. Nevertheless, the reliance on fixed-height pil-
lars overlooks crucial vertical geometry, leading to a loss of
LiDAR-specific spatial detail.

2.2. Cross-Modality Knowledge Distillation

Traditional knowledge distillation is originally designed
for transferring information from a large teacher model to
a compact student model with the same input data [16],
whereas cross-modality knowledge distillation supports dis-
tillation between different input modalities. Previous cross-
modality knowledge distillation model have been applied
between data types: depth to RGB [12], sketch to pho-
tographic [13], and synthetic to real [40]. More recently,
several works have adapted cross-modality distillation be-
tween LiDAR and cameras for 3D perception. BEVDis-
till [5] introduces a dense foreground-guided feature im-
itation mechanism along with sparse instance-wise distil-
lation to transfer rich spatial information from LiDAR to
multi-camera 3D object detection networks. Similarly, Dis-
tillBEV [46] employs region decomposition and adaptive
scaling to achieve a more fine-grained cross-modal distil-
lation, enhancing the alignment between LiDAR and cam-
era modalities for BEV perception tasks. UniDistill [54]
adopts a three-level approach—feature, relation, and re-
sponse—allowing for flexible teacher-student pairs of Li-
DAR or camera networks.

One challenge of cross-modality knowledge distillation
is that it is not always effective when the representation and
distribution gap between modalities is large, as forcing the
student to mimic the teacher often leads to suboptimal per-
formance [19, 32]. Another challenge is that most exist-
ing approaches have focused on 3D object detection rather
than BEV segmentation, and none address the 360-degree
equirectangular format that naturally arises from a single
panoramic camera. In this work, we bridge these gaps by
proposing an SGFM-based cross-modality knowledge dis-
tillation framework with AM for BEV segmentation, intro-
ducing the first system that leverages LiDAR data to guide a
single-camera model operating on full 360-degree equirect-
angular image input.

Consequently, we do not provide direct quantitative

comparisons to existing cross-modality distillation frame-
works [5, 14, 20, 22, 46, 54] as the existing literature fo-
cuses on different tasks (e.g., 3D object detection or map
reconstruction), employ LiDAR point cloud encoders and
assume multi-camera rigs, while our framework targets sin-
gle panoramic camera BEV segmentation using a unified
LiDAR–camera equirectangular image representation.

3. Methodology
Here, we introduce our novel LiDAR-driven distillation
framework (Section 3.1), which includes a new LiDAR
data representation, a voxel-aligned view transformer (Sec-
tion 3.2), and a cross-modality knowledge distillation archi-
tecture (Section 3.3).

(a)

(b) (c)
Figure 2. Illustration of the Dur360BEV dataset [9]. (a) LiDAR
data in equirectangular representation [Top: range image; Middle:
intensity image; Bottom: ambient image]. (b) Dual-fisheye spher-
ical image. (c) Equirectangular-projected 360-degree image.

3.1. Unified LiDAR Image Representation
We introduce a unified LiDAR image representation that en-
codes raw point clouds into a dense equirectangular grid
of shape (H×W×3). Each pixel corresponds to a unique
combination of azimuth and elevation for a full 360-degree
coverage consistent with the sensor’s field of view. The
three channels store range, intensity and ambient, thereby
capturing both geometric and radiometric information. This
representation offers two key advantages. First, it inte-
grates seamlessly into efficient image-based BEV segmen-
tation architectures, fully exploiting the detailed spatial and
contextual information provided by high-resolution LiDAR.
Second, by expressing both LiDAR and RGB in a consistent
spherical image space, it ensures natural alignment between
modalities and thus reduces the distribution gap in cross-
modality knowledge distillation (Figure 2).

Dur360BEV [9] natively provides all three fields for
constructing this representation(as shown in Figure 2a),



Figure 3. Sparse Voxel Pulling Module (View Transformer).
3D voxels derived from LiDAR point cloud are mapped to lo-
calised equirectangular LiDAR features, then bilinearly interpo-
lated to form 3D BEV features.

whereas other datasets offer only a subset of modali-
ties. The corresponding dataset-specific adjustments are de-
scribed in Section 4.

While range and intensity are widely adopted in LiDAR-
based perception frameworks, the ambient modality is less
commonly explored. Unlike range, which encodes geomet-
ric distance, or intensity, which measures the strength of
actively reflected laser pusles, ambient captures the back-
ground near-infrared radiation (800–2500 nm) received by
the sensor. It therefore provides information complemen-
tary to range and intensity, reflecting scene properties un-
der natural illumination conditions rather than active returns
alone. This additional modality enriches our unified LiDAR
image representation (Figure 2a) and offers robustness in
scenarios with challenging lighting, such as nocturnal or
adverse-weather environments, without replacing the geo-
metric or reflective cues already available.

3.2. Voxel-Aligned View Transformer
We introduce a novel voxel-aligned view transformer, a
feature projection module that maps equirectangular image
features into the BEV space guided by LiDAR voxelisation
(as shown in Figure 3). Unlike grid-based methods that pre-
dict on dense BEV grids [15] or pillar-based approaches that
form fixed-height vertical columns from 2D BEV points [4],
our design aligns voxels directly with the underlying Li-
DAR geometry. This yields a representation that combines
the strengths of voxel- and pillar-based models. It pre-
serves the spatial fidelity of voxel features while, once com-
pressed into the BEV plane, remaining lightweight and di-
rectly amenable to standard 2D CNN backbones. In con-
trast to pillar-based methods that risk sampling outside the
true object extent, our voxel alignment ensures precise and
noise-free feature projection.

Formally, given an equirectangular feature map I ∈
RC×H×W extracted from the input image backbone, we
voxelise the LiDAR point cloud P = {p | p = (x, y, z) ∈
R3} within a detection range [−R,R] using voxel size
(rx, ry, rz). Each voxel centre is then mapped to image

coordinates, and bilinear interpolation retrieves the corre-
sponding visual features, producing a voxel-level feature
tensor F ∈ RB×C×Z×Y×X . This operation leverages the
360-degree coverage of the equirectangular format to fully
utilise the voxel grid without suffering from multi-camera
overlaps or out-of-FoV artefacts [4, 15, 25, 48].

Finally, the voxel features are compressed along the ver-
tical axis to yield a BEV feature map, which is further re-
fined using a lightweight sparse U-Net to generate segmen-
tation predictions.

In summary, our design combines the unified LiDAR im-
age representation with the voxel-based view transformer.
This integration fully exploits the geometric and radiomet-
ric data from LiDAR since the voxel projection preserves
spatial accuracy, while the image-based representation en-
sures compatibility with efficient 2D CNN architectures.

3.3. Knowledge Distillation

Overview. As illustrated in Figure 4, our approach em-
ploys a soft-gated LiDAR–camera Teacher model (Sec-
tion 3.3.2) to guide a cost-effective Student (Section 3.3.3)
that operates solely on single-camera images. The Teacher
uses SGFM (Section 3.3.1) to adaptively balance geomet-
ric information from LiDAR with appearance cues from the
camera yielding richer multimodal representations. To fur-
ther reduce the feature gap between Teacher and Student,
we introduce an AM (Section 3.3.4) during training. These
spatial and semantic insights are distilled into Student to al-
low the camera-only model to achieve improved BEV seg-
mentation accuracy at test time without the hardware and
computational overhead of LiDAR sensors.

3.3.1. Soft-Gated Fusion Module
The proposed SGFM is designed to adaptively combine
LiDAR- and image-derived BEV features. It consists of
three main steps: feature concatenation, gate generation and
gated fusion, followed by a refinement stage. Let FI ∈
RC×H×W and FL ∈ RC×H×W denote the feature maps
from the image and LiDAR branches, respectively. Af-
ter channel-wise concatenation, we obtain the joint feature
map Fcat ∈ R2C×H×W . A 1×1 convolution with weights
W ∈ RC×2C×1×1 is applied to Fcat to model cross-modal
correlations and predict a gating coefficient map:

Gk,i,j = σ
( 2C∑

k′=1

Fcat
k′,i,j Wk,k′

)
,

∀ k ∈ [1, C], i ∈ [1, H], j ∈ [1,W ].

(1)

where σ(·) denotes the sigmoid function, ensuring G ∈
[0, 1]C×H×W . Here, G acts as a soft gate: higher values
increase the contribution of image features, while lower val-
ues emphasize LiDAR features. The gated fusion result is



Figure 4. Overview of the proposed KD360-VoxelBEV architecture. Teacher network (green): equipped with the SGFM (blue
dashed block), which integrates LiDAR range, intensity, and ambient cues with 360-degree camera features to produce enriched BEV
representations. AM (pink): fuses the Student and pre-trained LiDAR branch during training to reduce the feature gap between Teacher and
Student, providing additional reliable guidance. Student network (blue): a camera-only BEV segmentation model that benefits from cross-
modal distillation, achieving robust BEV predictions from a single 360-degree input image. Distillation (red dashed block): highlights
the regions where multi-channel dense feature distillation is applied, specifically between Teacher–Student and Student–Auxiliary pairs.
At inference, only the Student network is employed, ensuring lightweight and deployment-friendly BEV segmentation.

thus computed as

Ffuse = G⊙ FI + (1−G)⊙ FL, (2)

where ⊙ denotes element-wise multiplication. Finally,
Ffuse is refined by a 3×3 convolution followed by batch
normalization and ReLU activation:

Fout = ϕ
(
Conv3×3([F

fuse;Ffuse])
)
, (3)

where ϕ(·) denotes the BN–ReLU operation. This formula-
tion allows the network to learn spatially varying, channel-
aware weights that balance LiDAR geometry and image se-
mantics, thereby yielding more reliable multimodal BEV
representations for distillation.

3.3.2. Teacher: Soft-Gated LiDAR-Camera Fusion
Our Teacher network consists of LiDAR and 360-degree
camera branches whose features are fused through a soft-
gated mechanism) in BEV space, providing a unified mul-
timodal representation for supervision. The LiDAR inher-
ently provides precise 3D geometric information, while the
360-degree camera contributes complementary visual ap-
pearance cues. Inspired by [6], we adopt a late-fusion strat-
egy at the BEV feature level, where modality-specific fea-
tures are abstracted independently and subsequently fused
after BEV conversion.

Conventional approaches that directly operate on raw
point clouds with dedicated 3D backbones followed by

view transformation often suffer from distribution mis-
match when combined with image features. To address this
issue, we transform the LiDAR point cloud into a 3-channel
equirectangular image representation, consisting of range,
intensity, and ambient channels. This compact 2D repre-
sentation enables the use of well-established convolutional
backbones for effective feature extraction. The resulting
feature maps are then projected into the BEV domain via
our voxel-pulling module, which preserves fine-grained ge-
ometric details while maintaining global scene context. By
combining these LiDAR features with those from the 360-
degree image branch through a soft-gated fusion mecha-
nism, the Teacher produces enriched BEV representations
that serve as strong supervisory signals for distillation.

3.3.3. Student: Camera-Only

The Student model is lightweight and cost-effective, op-
erating exclusively on a single 360-degree camera input.
We adopt a compact 2D backbone to extract features and a
dense view-transformation module (grid sampling) to map
image features to BEV, mirroring the Teacher’s projection
to ensure feature-level alignment during distillation. This
design allows both networks to produce spatially compati-
ble BEV features. Although the Student lacks direct 3D ge-
ometry and thus tends to produce coarser BEV features, we
mitigate this limitation via cross-modality distillation that
aligns the Student’s intermediate representations (and out-



Figure 5. Illustration of distillation and auxiliary details. Fea-
ture maps from the decoder are used for channel-wise distillation,
which is applied between Teacher and Student as well as between
Auxiliary and Student, as indicated by the red dashed arrows.

puts) with those of the Teacher.
Following the Dur360BEV benchmark [8], the Student

predicts three BEV heads: car segmentation, centerness,
and offset. We supervise them with focal loss [39] (seg-
mentation), balanced MSE [38] (centerness), and ℓ1 loss
(offset). These terms are combined into the Student’s multi-
task objective with learned weights via uncertainty-based
weighting [21]; see Eq. (4).

Lstu = λ1 Lseg + λ2 Lcen + λ3 Loff. (4)

3.3.4. Auxiliary Module
The representation gap between the multimodal Teacher
and the camera-only Student is substantial. Directly forcing
the Student to match the Teacher often leads to unstable op-
timisation and suboptimal minima [32]. To mitigate this, we
introduce a training-only auxiliary branch that fuses the Stu-
dent’s camera features with the Teacher’s LiDAR features
using the same soft-gated mechanism. The auxiliary branch
is supervised by the Teacher and provides an additional dis-
tillation signal to the Student, as illustrated in Figure 5. This
design supplies a smoother intermediate target that is closer
to the Student’s modality while preserving LiDAR geome-
try for faster convergence. The auxiliary branch is disabled
at inference, adding no runtime overhead.

3.3.5. Channel-Wise Dense Feature Distillation
Inspired by channel-wise knowledge distillation for dense
prediction [41], we perform feature-level distillation at the
decoder output (Fig. 1). We investigate feature distillation
at different network depths: early, middle and late stages,
with detailed results reported in the ablation study (Sec-
tion 4.5). We denote the fused BEV feature maps from the
Teacher, Auxiliary, and Student as FT , FA, and FS (each
of size C×H×W ). To compare features across modalities,
we normalise each channel of the Teacher, Auxiliary, and
Student feature maps into spatial probability distributions

using a softmax with temperature T . For channel c this is
defined as

ϕ(Fc) =
exp(Fc,i/T )∑H·W

i=1 exp(Fc,i/T )
, c = 1, . . . , C. (5)

where i indexes spatial locations and T controls the distri-
bution smoothness.

The discrepancy between two normalised feature maps is
measured using the Kullback–Leibler (KL) divergence. To
aggregate across channels and compensate for temperature
scaling, we define the KL-based distillation objectives for
the Teacher–Student and Teacher–Auxiliary pairs as

LT→S
KL =

T 2

C

C∑
c=1

H·W∑
i=1

ϕ(FT
c,i) log

ϕ(FT
c,i)

ϕ(FS
c,i)

, (6)

LT→A
KL =

T 2

C

C∑
c=1

H·W∑
i=1

ϕ(FT
c,i) log

ϕ(FT
c,i)

ϕ(FA
c,i)

. (7)

Ablation results analysing the effect of applying KL at dif-
ferent stages in Section 4.5.1, and its advantage over alter-
native objectives in Section 4.5.2.

The overall channel-wise distillation loss is then ex-
pressed as

LKD = α1 LT→S
KL + α2 LT→A

KL , (8)

The overall training objective combines the channel-wise
distillation loss in Eq. (8) and the multi-task Student loss in
Eq. (4):

L = LKD + Lstu. (9)

4. Experiments
We compare our approach with existing camera-based BEV
segmentation methods. We benchmark against state-of-
the-art methods on Dur360BEV [9] (Section 4.4) and fur-
ther evaluate on KITTI-360 [27] with a two-fisheye setup
(Section 4.4). We also present ablations (Section 4.5) on
Dur360BEV to study distillation configurations and loss
choices for KD360-VoxelBEV.

4.1. Datasets
Dur360BEV [9] offers single panoramic-camera imagery
paired with 128-channel LiDAR. We use the Extended ver-
sion, featuring longer routes, more diverse scenes, and
higher-quality annotations over the Initial release, with
13.9k frames for training and 1.5k for validation. Ground-
truth BEV segmentation maps are derived from 3D bound-
ing boxes, following the protocol of SimpleBEV [15] and
the official Dur360BEV setup [9]. KITTI-360 [27] pro-
vides two side-mounted fisheye cameras covering 360-
degree and a 64-channel LiDAR. Since the dataset does



not include BEV annotations, we generate ground-truth
BEV segmentation maps following the same protocol as in
Dur360BEV [9](details in Appendix E). We adopt the split
from [11] and downsample the size to 20k frames for train-
ing and 1k for validation due to computational constraint.

We also considered other datasets, such as Mapil-
lary [31] and nuScenes [2]. The former provides panoramic
imagery with fused point clouds but lacks per-frame Li-
DAR scans and dynamic objects, while the latter offers
six surrounding-view cameras with 32-beam LiDAR but re-
quires fusing the perspective images into an equirectangu-
lar view, introducing visible seams and artifacts [47]. These
limitations make both datasets unsuitable for our BEV seg-
mentation framework, see details in Appendix B.

4.2. Evaluation Metrics
We report Intersection over Union (IoU) across three
square-shaped ranges: 100m×100m, 50m×50m, and
20m×20m. Following the Dur360BEV benchmark [9], we
also adopt the efficiency ratio (ER), defined as IoU divided
by model parameters, to characterise the trade-off between
accuracy and model complexity. In addition, we report
frames per second (FPS) to measure inference speed.

4.3. Experimental Setup
In our voxel-aligned view transformer module, we use vox-
els of size 0.5m in each dimension, and both the Teacher
and the Student networks are configured within a detec-
tion range of [100m× 8m× 100m] (in x,y,z order, where
y is height) yielding a 200 × 200 BEV map covering
100m × 100m in the x–z plane. Following prior BEV
segmentation works [4, 9, 15], we adopt EfficientNet and
ResNet as our backbones. Since our contribution focuses
on the cross-modality distillation framework rather than
backbone design, we intentionally use these widely-adopted
baselines to ensure fair comparison and isolate the improve-
ments brought by our distillation method.

Both Teacher and Student models are trained indepen-
dently on an NVIDIA A100 80G GPU. For all main experi-
ments, we train each network for up to 12k iterations with a
batch size of 6, a learning rate of 5×10−4, and a weight de-
cay of 1×10−5, using AdamW [29] with a 1-cycle learning
rate schedule [43]. For inference, we evaluate all models on
an NVIDIA RTX 3080 GPU and detailed configurations are
provided in the Appendix D.

4.4. State-of-the-Art Comparison
Dur360BEV. Table 1 reports a quantitative comparison
with existing BEV segmentation methods, and the corre-
sponding qualitative results are illustrated in Figure 6. The
comparison reveals three key findings:

(i) By incorporating LiDAR through the proposed
SGFM, the Teacher’s performance increases to 58.3%

Model Modalities Backbone IoU100 IoU50 IoU20 ER FPS

SimpleBEV [15] C RN-101 31.1 37.0 38.5 0.74 25.7
PointBEV [4] C EN-b4 31.5 38.9 39.7 3.75 15.0
Dur360BEV (dense) [9] C RN-101 32.7 40.4 42.0 0.78 25.3
Dur360BEV (coarse/fine) [9] C EN-b4 32.6 40.3 41.6 3.88 14.9
Ours (Teacher) LC RN-101/EN-b0 58.3 64.3 68.0 0.85 14.0
Ours (Student) C EN-b0 32.2 41.8 58.4 3.04 31.2
KD360-VoxelBEV, distill w/o AM LC → C EN-b0 39.4 49.3 64.2 3.72 31.2
KD360-VoxelBEV, distill w/ AM LC → C EN-b0 41.2 51.7 67.1 3.89 31.2

Table 1. Comparison results (%) on Dur360BEV dataset [9] with
metrics: IoU (↑), ER (↑) and FPS (↑). Bold and underlined num-
bers denote the best (Top-1) and second best (Top-2), respectively.

Model Modalities Backbone IoU100 IoU50 IoU20

Ours (Teacher) LC RN-101/EN-b0 53.9 65.8 76.4
Ours (Student) C EN-b0 24.1 37.9 63.8
KD360-VoxelBEV LC → C EN-b0 32.3 46.6 69.6

Table 2. Comparison results (%) on KITTI-360 dataset [27].

IoU100, confirming the effectiveness of multimodal fu-
sion. The impact of different LiDAR channel combinations
(Range, Ambient, and Intensity), as well as the effect of
combining LiDAR with camera, are further analysed in the
ablation study (see Appendix A). Results demonstrate that
the configuration combining all three LiDAR channels with
the camera achieves the best performance.

(ii) With the same lightweight EfficientNet-B0 back-
bone, our distillation framework improves the Student per-
formance to 39.4% IoU100, surpassing all existing camera-
only BEV segmentation methods. Moreover, the introduc-
tion of the AM further narrows the representation gap, push-
ing the distilled Student to 41.2% IoU100 while achieving
the highest efficiency ratio. This demonstrates an excellent
trade-off between accuracy and computational cost, mak-
ing the model highly suitable for deployment in resource-
constrained scenarios.

KITTI360. From Table 2, since no prior methods are tai-
lored for the KITTI-360 car segmentation task, we directly
transfer our distillation configuration and evaluate it on this
dataset. The results show that knowledge distillation con-
tinues to exploit multimodal advantages even under limited
sensor settings, where LiDAR provides only two channels
(range and intensity) and the cameras are wide-FoV fisheye.
Compared with the Student baseline, our KD360-VoxelBEV
improves performance by +8.2% IoU100, demonstrating
the robustness and generalisability of our approach across
datasets with different modality characteristics.

4.5. Ablation Studies
We conduct a series of ablation experiments to better un-
derstand the factors driving the performance of KD360-
VoxelBEV.

4.5.1. Effect of Distillation Stages and AM:
To evaluate the effectiveness of knowledge distillation, we
consider three distinct stages (shown in Figure 7): (i) af-



Figure 6. Qualitative BEV segmentation results on the Dur360BEV dataset [9].

Stage1 Stage2 Stage3 AM IoU100 IoU50 IoU20

✓ – – w/o 20.96 31.53 47.05
– ✓ – w/o 20.58 30.88 49.48
– – ✓ w/o 39.37 49.34 64.21
✓ – – w/ 30.50 40.33 51.33
– ✓ – w/ 32.22 42.11 56.42
– – ✓ w/ 41.24 51.69 67.08

Table 3. Ablation study of KD model with different stage setups.

Figure 7. Illustration of distillation stages for ablation study (Aux-
iliary module excluded). Blue blocks denote Teacher modules, and
green blocks denote Student modules.

ter feature fusion (stage1; or, without gated fusion, the cor-
responding location in the LiDAR branch), (ii) the feature
map at the output of the U-Net encoder (stage2), and (iii)
the feature map at the output of the U-Net decoder (stage3).
At each stage, we apply the channel-wise distillation loss in
Eq. (6) between Teacher and Student, optionally combined
with the auxiliary distillation loss in Eq. (7).

Overall, as shown in Table 3, applying distillation at later
stages yields larger performance gains, since early convo-
lutional features are highly modality-specific and may in-
troduce noise or instability when distilled, whereas deeper
semantic representations are more modality-invariant and
thus transfer more effectively across modalities. In addi-
tion, incorporating the AM further mitigates the representa-
tion gap between Teacher and Student, leading to consistent
improvements across all IoU thresholds.

Figure 8. Comparison of distillation losses at different stages.

4.5.2. Distillation Losses:
We evaluate two different distillation objectives: the Kull-
back–Leibler (KL) divergence loss [16] and the Affinity
Distillation (AD) loss [7]. A comparison of their perfor-
mance is presented in Fig. 8. As shown, the AD loss yields
more stable performance across all stages, whereas the KL
loss underperforms AD in the earlier stages but catches up
at deeper layers. This trend can be attributed to the fact
that KL divergence is more effective at aligning high-level
semantic distributions than low-level spatial correlations.

5. Conclusion
We present KD360-VoxelBEV, a cross-modality distilla-
tion framework tailored to BEV segmentation from a sin-
gle panoramic camera, where a soft-gated LiDAR–camera
fusion Teacher supervises a lightweight camera-only Stu-
dent. Our framework combines a voxel-aligned view trans-
former with a unified panoramic LiDAR image representa-
tion, preserving geometric fidelity while allowing for effi-
cient BEV reasoning with 2D backbones. Experiments on
Dur360BEV [9] and KITTI-360 [27] show that the Teacher
substantially outperforms existing camera-based BEV seg-
mentation methods and that the distilled Student matches or
surpasses state-of-the-art camera-only baselines [4, 9, 15]
while running in real time. In future work, we plan to vali-
date the framework on a broader range of datasets and inves-
tigate its integration with transformer-based architectures to
further enhance representation capacity.
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Appendix
A. Dur360BEV-mini
Similar to the official nuScenes-mini [2] split (1% of the full
dataset, 10 scenes in total), we construct a mini version of
Dur360BEV-Extended to facilitate efficient input modality
ablation studies and debugging. Specifically, we uniformly
downsample the Extended split by a factor of 10, result-
ing in 1,350 training and 150 validation frames. This re-
duced set preserves the distribution of the original dataset
while enabling much faster experimentation. Unless other-
wise stated, all reported main results are obtained on the full
Dur360BEV-Extended dataset.

B. nuScenes [2] Expriments
nuScenes [2] provides six surrounding-view cameras and
a 32-channel LiDAR. We adopt the official train/val split
(28.1k/6k samples) and generate BEV ground truth follow-
ing the protocol in Lift-Splat [33] and SimpleBEV [15],
where points inside “vehicle” bounding boxes are labeled
positive and others negative.

We found that applying KD360-VoxelBEV to
nuScenes [2] is problematic due to the image forma-
tion process. As shown in Fig. 9a, the equiangular
projection is stitched from six individual cameras rather
than captured by a true 360◦ sensor. Consequently, objects
spanning across multiple cameras often become misaligned
at the image borders, leading to duplicated or fragmented
appearances. In addition, differences in exposure and
illumination across cameras introduce visible seams and
inconsistencies. These artifacts make it difficult for the
model to extract coherent features, and as illustrated by
the prediction in Fig. 9c), a single car may be broken into
several disconnected parts. This highlights the limitation
of using stitched multi-camera images in our distillation
model, which relies on consistent 360◦ visual input.

(a)

(b) (c)

Figure 9. An illustrative case of suboptimal results when ap-
plying KD360-VoxelBEV on nuScenes [2]. (a) Equiangular im-
age converted from six cameras; (b) BEV car label; (c) distillation
segmentation results. The red box highlights a bus, which is frag-
mented due to discontinuities between stitched camera views.

Input Modality IoU100 IoU50 IoU20

Single-Modality Baselines
C (Camera Only) 31.6 37.9 39.6
LiDAR (RI) 50.9 56.8 62.0
LiDAR (AI) 51.7 58.5 67.0
LiDAR (RA) 53.4 59.2 65.1
LiDAR (RAI) 54.0 61.0 67.2

Multi-Modality Fusion
LiDAR (RAI) + C (w/ SGFM) 58.8 63.4 70.1

Table 4. Ablation study on input modalities and SGFM using the
Dur360BEV-mini [9]. Metrics: IoU (↑). R: Range, A: Ambient, I:
Intensity, C: 360◦ Camera. The proposed SGFM effectively fuses
LiDAR and Camera features to outperform unimodal baselines.

C. Effect of Input Modalities and SGFM

To enable faster experimentation, we perform this study on
Dur360BEV-mini, while all main results are reported on
the full dataset. The details of the Dur360BEV-mini are
provided in Appendix A. We follow the same experimental
configuration as in the main experiments, but train on the
Dur360BEV-mini dataset up to 4k iterations to account for
the reduced amount of input data.

Impact of LiDAR Channels. We first analyse the contri-
bution of the three LiDAR channels (range, intensity, am-
bient) by selectively enabling or disabling them. As shown
in Table 4, ambient information proves highly important:
removing it (LiDAR (RI)) causes a notable performance
drop compared to the full configuration (LiDAR (RAI)),
decreasing IoU100 from 54.0% to 50.9%. The inclusion
of ambient data consistently enhances BEV segmentation
alongside range and intensity. This complementary cue,
which captures environmental illumination beyond geome-
try and reflectivity, may explain why our distillation frame-
work achieves stronger gains on Dur360BEV [9] compared
to KITTI-360 [27], which lacks ambient measurements.

Effectiveness of SGFM. We further validate the effective-
ness of our Soft-Gated Fusion Module (SGFM) by compar-
ing single-modality baselines against the fused system. As
reported in Table 4, the Camera-only (C) baseline achieves
31.6% IoU100, limited by the lack of explicit depth in-
formation. The LiDAR-only (RAI) model performs sig-
nificantly better at 54.0% IoU100 due to precise geomet-
ric sensing. However, by integrating both modalities via
SGFM, our Teacher model (LiDAR (RAI) + C) reaches
58.8% IoU100, outperforming the strongest single-modality
baseline by +4.8%. This improvement indicates that SGFM
effectively leverages the complementary nature of the two
sensors—combining the rich semantic and texture cues
from the 360◦ camera with the accurate spatial geometry
from LiDAR—to produce a more robust BEV representa-
tion.



D. Inference Time Measurement Details
We benchmark inference time for all models on the
Dur360BEV dataset using a single NVIDIA RTX 3080
GPU. All measurements are conducted at a fixed input res-
olution of 1024×2048 under PyTorch with CUDA/cuDNN
enabled. Each experiment is repeated twenty times, and the
average is reported.

Table 5 summarizes the latency, throughput (FPS), and
batch size used for inference. While the teacher model
exhibits the slowest inference, KD360-VoxelBEV achieves
the best trade-off between speed and efficiency, signifi-
cantly surpassing existing methods and demonstrating both
the effectiveness of knowledge distillation and its suitability
for real-world applications.

Model Latency (ms) ↓ FPS ↑
SimpleBEV [15] 38.9 25.7
PointBEV [4] 66.7 15.0
Dur360BEV (dense) [9] 38.5 25.3
Dur360BEV (coarse/fine) [9] 67.1 14.9
Ours (Teacher) 71.7 14.0
KD360-VoxelBEV 32.1 31.2

Table 5. Inference time comparison of different models on the
Dur360BEV dataset using an NVIDIA RTX 3080 GPU.

E. KITTI-360
E.1. Image Processing
KITTI-360 provides raw images from two side-mounted
wide-FoV fisheye cameras. We project each fisheye image
into spherical coordinates using the official calibration pa-
rameters and camera FoV, and then reproject to an equirect-
angular format. In this space, pixels are parameterised by
azimuth and elevation angles, covering the full 360-degree
field of view (see Figure 10b, 10c). This conversion yields
a panoramic representation consistent with Dur360BEV, fa-
cilitating cross-dataset training and evaluation.

E.2. Annotation Process
The raw KITTI-360 [27] annotations consist of two cate-
gories of 3D bounding boxes: static and dynamic objects.
Static objects are labeled on accumulated point clouds,
while dynamic objects are annotated on individual frames.
Directly using these annotations introduces two issues: (1)
static boxes from accumulated scans may include objects
that are either fully occluded in a given frame or located be-
yond the effective LiDAR/camera detection range, and (2)
dynamic boxes must be associated with the correct frame
using timestamps.

To address this, we explored several filtering strategies.
Our initial attempt using the timestamp range (start/end)

(a)

(b) (c)

Figure 10. Illustration of the KITTI-360 dataset [9]. (a) Li-
DAR data in equirectangular representation [Up: range image;
Down: intensity image]. (b) Dual-fisheye spherical image. (c)
Equirectangular-projected 360-degree image.

to filter static boxes resulted in missing objects on re-
peated routes, while a distance-based strategy occasionally
retained static boxes outside the current FoV. Our final ap-
proach introduces per-frame LiDAR checks: static boxes
are retained only if they contain points in the correspond-
ing frame’s point cloud, thereby ensuring consistency with
the instantaneous scene visibility. Dynamic boxes are pre-
served using frame IDs. After this filtering, we follow the

(a)

(b) (c)

Figure 11. Illustration of the annotation filtering on KITTI-
360 [9]. (a) Equirectangular image. (b) BEV GT segmentation
with distance-based strategy, where many vehicles fully occluded
by buildings are still projected into the current frame. (c) BEV
GT segmentation after per-frame LiDAR checks, which effectively
removes such artifacts.



same procedure as in Dur360BEV to rasterize 3D bounding
boxes into BEV ground-truth maps.
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