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Abstract— Here we propose a complete system for robust
detection and recognition of the current speed sign restrictions
from a moving road vehicle. This approach includes the
detection and recognition of both numerical limit and national
limit (cancellation) signs with the addition of automatic vehicle
turn detection. The system utilizes both RANSAC-based colour-
shape detection of speed limit signs and neural network based
recognition whilst turn analysis relies on an optic flow based
method. As primary detection is based on a robust colour and
shape detection methodology this results in a real-time
algorithm that is invariant to variable road conditions. The
integration of both limit, cancellation and vehicle turn detection
within the bounds of real-time system performance represents
an advance on prior work within this field.

1. INTRODUCTION

ELIABLE traffic-sign detection is currently one of the

most important tasks in automotive vision industry. It
represents a significant challenge due to common variations
in weather and lighting conditions in conjunction with the
obvious on-vehicle constraints.

The system proposed here aims to inform the driver of the
current speed restriction at any given point in time based on
the automatic detection and recognition of roadside
restriction signs. Further integration could allow such a
system to be employed as part of an adaptive cruise control
system or on-board driver information display. Our system
was developed in UK and as such follows assumptions based
on the UK traffic regulations - namely that an in place speed
restriction is cancelled by cancellation sign (also commonly
denoted as national speed limit sign) or by the vehicle
turning into another road. In addition some experimental data
was recorded in Poland where similar signage is present.

II. RELATED WORK

Automatic road sign recognition can be divided into two
stages: initial primary detection of candidate signs within the
image and secondary recognition (i.e. verification) of the
type of sign present. For each of these stages various prior
approaches have been proposed.
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A. Primary Detection

As such initial detection via colour separation in the Hue,
Saturation and Variance (HSV) colour space is usually
employed as per Maldonado-Bascon et al. and Damavandi
et al [2, 3] . By contrast Moutarde et al. [1] propose to
perform sign detection without prior colour segmentation —
relying solely upon shape characteristics.

In this area several shape-based approaches have been
proposed: various generalizations of classical Hough
transform as in [1,3], template-based matching [4] and even
a direct Support Vector Machine based approach [2].

B. Secondary Recognition

Recognition is usually performed by a machine learning
based classification algorithm. Commonly this is an
Artificial Neural Network (ANN) approach as in [1,3,5] or
in some more recent work Support Vector Machines (SVM)
[2]. This step of the algorithm may be also divided based
upon the classifier input. Torresen et al. [4] propose to
extract just single digits from the sign candidate and use just
the left one as input in the classification process. By contrast
Moutarde et al. [1] propose to recognize multiple extracted
digits separately. Although presumably carried out in the
interests of real-time performance and generality, we claim
that this improvement may be still insufficient for a realistic
driving environment. Figure 1 presents example signs (drawn
from both UK and Polish roads) that may be classified
incorrectly using either of the aforementioned approaches. In
contrast Damavandi et al. [3] propose to use the whole sign
as the input and achieve 90% recognition using a neural
network based approach.
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Figure 1. Signs similar to speed restriction signs.

In the system proposed here we couple a similar, whole sign
based approach [3], with the robust and efficient shape
detection methodology of RANSAC to achieve improved (all
weather) performance.

III. DETECTION AND RECOGNITION ALGORITHM

The outline of our proposed algorithm is initially
presented in Figure 2.
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Figure 2. Structure of the algorithm

Overall we propose a two stage process — robust sign
detection via colour and shape, then secondary classification
of sign type from the trained neural network. Turn detection
(discussed separately in Section C) is integrated into the
initial detection stage performed on the image to provide a
speed limit reset when a significant vehicle turn is detected.

A. Detection Stage

The aim of the detection step is to generate hypothesises —
candidate signs for secondary verification. By design this
step may produce false positive candidate signs but this over-
detection means it will not miss any potential signs.

1) Numerical Speed Limit Detection

All signs from this group are characterised by a circular red
boundary (e.g. as per Fig 1).

Firstly, by using the YCrCb colour space, the Cr channel is
extracted from the input image (Figure 3(a)), then adaptively
thresholded (Figure 3(b)) using two thresholds to provide
robust isolation of red scene component. Connected-
component analysis is then used to isolate significant
components in the remaining red feature space. From these
remaining scene components, limit-sign candidates are then
selected using RANSAC based circle detection (Figure
3(c)).

The concept of RANdom Sampling And Consensus
(RANSAC), proposed by Fischler et al. [6], is very
straightforward — given a dataset (i.e. contour), randomly
select a sub-set of sample features (i.e. points) and try to fit a
geometric shape model (i.e. circle). The model is then
compared against the whole feature set. If sufficient number
of features from the dataset satisfy the model with a given
tolerance, then the feature is determined to exist and
RANSAC process is terminated. The number of attempts
(trials) to fit a model in a given set of can be estimated using
the following formula:

log(P, all-f )

log(1- P (P)""
where P,,; is the probability of algorithm failing to detect a
model, P, is the probability of a data point belonging to a
valid model and Py is the probability of a data point
belonging to the same model. In our case we use a circle
model based on the geometry of three randomly selected

Trials =

feature points within a contour and set the required
probability empirically.
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Figure 3: Steps of numerical-limit signs candidates generation algorithm

An example is shown in Figure 3 where we see this
algorithm is able to detect the circle even if the original
colour segmentation is not perfect due to adverse conditions.
This illustrates the robustness of the RANSAC approach to
noise and partial occlusion making it highly suitable for the
varying road conditions in our detection environment.

2) National Speed Limit Detection

Figure 4. : Steps of national-limit signs candidates generation algorithm

National speed limit (i.e. cancellation) signs are
considered as white circles with a left to right diagonal black
stripe (Figure 4).

A novel method is proposed for national-speed limit signs
detection based on first locating black stripe and then



verifying the circular contour around it. Black stripes are
located using red channel of RGB input image from which
edges are extracted - using canny edge detector (Figure 4(a)).
Then morphological opening and closing are applied with
appropriate kernels so that only suitably inclined edges
remain (Figure 4(b)). Next, their straightness is checked
using Principal Component Analysis. Finally, if we detect a
pair of remaining parallel edges with a dark interior (Figure
4(c)) we examine it for a surrounding circular contour using
RANSAC circle fitting as before (Figure 4(d)). Where a
circular contour is successfully detected a candidate national
speed limit sign is detected.

B. Recognition Stage

In this step recognition of the candidate limit signs
(numerical and national) is performed. Any false positives
generated by the earlier detection step are now rejected.

1) Candidates Normalization

The normalization step is an intermediate step before
passing sign candidates to the neural network.

In the case of numerical limit-sign candidates this step
assures that only white interior of the sign is passed to the
neural network. Any remaining red boundary is removed
using the prior adaptive thresholding and connected
component analysis on the input image converted previously
to greyscale.

Figure 5: Removing red boundary from numerical-limit sign candidates

All sign candidates are extracted from the input image to
greyscale and thresholded to a binary representation using
the average pixel of the candidate interior. This approach
gives very good separation of the dark digits from bright
background - even in low-light conditions. Some examples
of this normalisation process are presented in Figure 6.
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Figure 6: Neural network input normalization

As the last stage of normalization all candidates are scaled to
a common size of 20x20 pixels for input to the neural
network. This is required to normalize the spatial distribution
of the sign sub-image to a common number of neural

network inputs (i.e. 20x20, 400 inputs)

2) Neural Network

A feed-forward multi-layer perceptron network was used in
this work [8]. It consists of 400 neurons in the input layer
(20x20 normalized pixel sample), 30 neurons in hidden layer
and 12 neuron outputs corresponding to the following signs
types (UK/Poland): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
national-speed limit and false positive (i.e. not a sign). Each
output value is the classification likelihood between 0 and 1
for the corresponding class (i.e. type) of sign.

The size of the hidden layer was set by empirical
experimentation. Figure 7 presents performance of the
network on the independent testing set of 1050 unseen
samples in three configurations (20, 30, 40 neurons in hidden
layer) — with 30 giving the best overall performance in terms
of the number of correct sign classifications.
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Figure 7. Neural Network training results

Analyzing the expected performance curve (Figure 7) we
have decide to use 150 iteration as a termination condition
for final training. This value assures good performance and
at the same time prevents over-fitting of the classifier.

A given sign is considered as successfully classified by the
network if the difference between the highest and the second
highest classification likelihood returned in the output layer
(of the 12 outputs) is greater than 0.5. Cases where we do not
achieve this level of class separation in the classification
output (i.e. multiple classes occur within the 0.5 uncertainty
bound) are not classified.

C. Automatic Turn Detection

The final part of the system is the integration of optic flow
based vehicle turn detection.

Turn detection calculation is restricted only to the
situations when turn indicator is activated by a driver to
avoid turn detection when following a (non-junction) turn in
the road. Optic flow is then calculated between successive
video image frames using the pyramidal implementation of
the Lucas and Kanade work presented in [1].



In general, optic flow is a vector between corresponding
points on image I and J that minimizes the residual function
defined as:

U AW, uy+wy
sd)=ed,d)= Y D Uxy)-J(x+d,y+d,))
X=u,—w, Y=ty —wy
where wy, and wy are the size of the image neighbourhood
over which the localised flow is calculated. As it is a
computationally expensive process, we calculate it only for
the a sub-sampled grid of points spread over the image
(Figure 8). This approach allows us to accurately detect the
turn whilst significantly reducing the computational
requirement of the process and hence maintain real-time
performance. The white lines in Figure 8 represent the optic
flow vectors for potential vehicle turn scenarios.

Figure 8. Optic flow on straight road (top) and while turning (bottom)

One can observe that on a regular section of road (Figure 8
top ) the resultant mean flow vector over this grid is close to
0, whilst during the turn (Figure 8 bottom ) it is greater then
0 (bias one direction). To additionally reduce the influence
of the noise present in homogeneous regions of the image
(e.g. sky, road), we limit our calculations to only include
flow vectors deflected less than 45 degrees from horizontal
axis in the mean flow calculation.

Turn is confirmed when the average value of these mean
flow vectors over the past fifteen video frames is above
certain threshold. This threshold was tuned to avoid
overtaking manoeuvre being detected as turn. Two examples
of the real road situations are presented as graphs in Figure 9
with the mean flow per 15-frames as the y-axis and time in
number of frames on x-axis. Introducing a common flow

threshold, (Figure 9) combined with the earlier deflection
constraint, allows the robust determination of vehicle turns
with as minimal computation as possible.
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Figure 9. Mean optic flow over 15 frames.

Turning (left) versus overtaking (right)

IV. RESULTS

Our detection and recognition method achieves 27 fps
processing speed (1.6GHz single-core Intel CPU) which is
reduced to 12 fps when turn detection is active due to the
required optic flow calculation. Even at this reduced frame
rate, processing every second frame, we note that real-time
performance is achieved and does not decrease the overall
detection/recognition performance of the system.

The capabilities of the system were tested on footage
gathered from camera mounted behind windscreen recorded
in UK and Poland and cover various weather conditions
(Figure 10). Results are summarized in Table 1 where we see
a high rate of successful recognition. On average 13 correct
recognitions per sign in Poland and 6 recognitions per sign in
UK over the 101 total sign instances passing the host vehicle.
This difference is due to the fact that signs in UK are very
often smaller than those found in Poland.
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A L Valid signs :
Limit Sign by limit ; : 7 Signs
Cané:ielrllastlon Total NS"iSS:Sd recognitions | candidates
20 30 40 50 60 70 80 90 100 9 9IS | Correct  Wrong |detections

2 6166 1033112 3

12

101

3

1155

3

3498

Tablel. Detection and Classification Results

During the experiment just 3 signs were missed from 101
signs instances encountered, which gives an overall 97% of
the signs detected. The system then made only 3
misclassifications against the 1155 correct recognitions (of
these 101 instances occurring over multiple frames). This
means that misclassification ratio of the system is less than
1% (0.2%). However, this consideration does not take into
account instances lost in the uncertainty bound (due to lack
of separation between classes).

Some examples of system operation are presented on the
Figure 10 where we see the correct classification of speed
restriction signs under a number of different weather
conditions.




Figure 10. Examples of successful speed sign detection (numerical & cancellation) in varying road conditions and environments.



In Figure 11 two example signs extracted from the
misclassified samples are presented. Even for a human
viewer it is confusing to classify these examples with the first
corresponding either to 50 or 90 (Figure 11, left) and the
second being 80 or 30 (Figure 11, right). It is noted that
fortunately such misclassification occurs very rarely and is
characterised when sign is distant from the host car. A
constraint of the size of the sign in the image as part of the
initial detection stage would resolve this problem but due to
varying national signage standards is left as an area for future
work.

Figure 11. Misclassified samples

I. FURTHER WORK

Parallel implementation would allow real-time operation
whilst processing every frame during turn detection which
may further improve the overall global sign detection ratio.
Additional work investigating the temporal clustering of
approaching sign recognitions would also help improve
performance.

Whilst the system has been developed to meet UK road
regulations developing a specific junction detector could
extend its application to other countries in which this
instance cancels current speed restriction.

II. CONCLUSION

We present a novel system, that integrates both
numerical speed limit signs recognition, robust cancellation-
sign detection and automatic turn detection within the
bounds of real-time performance. This advances the current
state of the art with regard to sign recognition approaches
[1,2,3,4,5] and uniquely integrates optic flow based turn
detection. It may be used for on-vehicle continuous current
speed restriction awareness or for integrated speeding
prevention. The system has been successfully tested under
various daylight weather conditions with good performance.
Night time operation, the use of temporal clustering and road
feature detection are left as areas for further investigation.
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