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Abstract

The automatic detection of objects within complex volumetric imagery is becoming
of increased interest due to the use of dual energy Computed Tomography (CT) scanners
as an aviation security deterrent. These devices produce a volumetric image akin to that
encountered in prior medical CT work but in this case we are dealing with a complex
multi-object volumetric environment including significant noise artefacts. In this work
we look at the application of the recent extension to the seminal SIFT approach to the
3D volumetric recognition of rigid objects within this complex volumetric environment.
A detailed overview of the approach and results when applied to a set of exemplar CT
volumetric imagery is presented.

1 Introduction
X-ray type technologies have been used for airport security checks for several decades but
the use of computer vision within this domain is limited to techniques that purely aid human
baggage screeners [1]. Heightened regard to the detection of complex articles within baggage
and parcels for air transit and other forms of transportation has led to an increased interest
in the use of automatic recognition strategies within this domain. In this area we specifically
look at the use of Computed Tomography (CT) volumetric imagery where a three dimen-
sional voxel image of the baggage/parcel item is obtained. Items of interest can be difficult
to detect within this environment due to a range of orientation, clutter and density confusion
in a traditional 2D X-ray projection [18]. An example of this is shown in Figure 1 where we
see (a) an example bag (photograph), (b) an overhead 2D X-ray revealing an item of interest
within and (c) a different scan of the same bag with the item of interest in an orientation
that does not reveal its salient features. The difference of orientation is a limitation of 2D
X-ray scanners which makes detection (automatically or by human operators) particularly
challenging.

Recent advances in imaging technology now facilitate the use of dual energy CT scanners
for the real time scanning of bags in airport baggage/parcel handling operations [21]. It
is from these scanners that we obtain a series of image slices through the bag which can
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Figure 1: Bag and X-rays

Figure 2: 3D volume of complex bag containing a revolver

be reconstructed as a traditional CT 3D volume akin to those encountered within medical
CT imaging. Prior work on the automatic recognition of objects within this complex 3D
volumetric imagery is very limited. Only the prior work of Bi et al. [5] took 3D CT
volumes and attempted recognition of an item of interest but reduced the problem to two
dimensions by looking at the item characteristic cross section when extracted from the 3D
volumetric image (c.f. 2D X-ray views of Figure 1). By contrast here we consider explicit
3D recognition of items within the 3D CT volume domain.

The Scale Invariant Feature Transform (SIFT) approach [13] is a widely recognized pre-
cursor to a substantial body of feature point based object recognition strategies [11, 15].
The extension of the SIFT approach to three dimensional data has been attempted by several
researchers [2, 6, 7, 16, 17, 19]. Scovanner et al. [19] created a 3D SIFT descriptor for
application to action recognition in video volumes and additionally work has been encoun-
tered in the application of 3D SIFT to medical registration [2, 6, 17] or panoramic medical
image stitching [7, 16]. The use of SIFT for 2D object recognition relies on objects having
textures internal to their boundary such that these regions can be reliably described from one
image to another. Points of interest that are on an object boundary are more easily corrupted
by the presence of other objects. Similarly, in 3D, we anticipate that objects will need to
have reliable textures internal to their surface which are not corrupted by the presence of
other objects close by. The 3D extension of SIFT for explicit object recognition (its original
application [12]) has received little attention in the arena of complex volumetric imagery.

1.1 Complex CT Volumetric Imagery
An example of a 3D scan of an item of baggage is shown in Figure 2 where we see the
presence of an item of interest amongst more general cluttered items. Here the voxel density
is represented in a continuous range [0,1].

The type of baggage scanner machine used to capture the CT volumetric imagery for this
work is primarily aimed at dual energy explosives detection [21]. As a result of this primary
(non object recognition based) objective two additional consequences are suffered within
the imagery: 1) the presence of metal items causes significant artefacts within the imaging
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Figure 3: An example of metal artefacts in CT baggage imagery

(Figure 3) and 2) the resolution is anisotropic and limited to [1.6mm ×1.6mm × 5mm]. The
metal artefacts radiate out in the x-y plane and do not remain consistent from one scan to
another if the metallic region changes orientation.

Although prior work has looked at the removal of metal artefacts in medical CT imagery
[9, 10, 14] this has not been considered at the present time within this work. Additionally
we recognize that the poor resolution gives rise to stair step artefacts [4, 22]. Although this
poses significant challenges for recognition we consider here the limitation in resolution to
be similar to the scale invariant challenges addressed by the SIFT algorithm and additionally
the unpredictable nature of the metal artefacts to be akin to that of recognition in the presence
of occlusion - again an area in which SIFT [13] has previously excelled. Complex imagery
of this nature containing dense collections of man made objects scanned at low resolution
and in the presence of metal artefacts has not previously been considered for any work within
automated 3D recognition.

2 Extension of SIFT to 3D
A 3D extension of the SIFT algorithm has been recently presented in the literature by a
number of authors [2, 6, 16, 19]. Firstly, Scovanner et al. [19] used a form of 3D SIFT to
assist in 3D video volume analysis followed by Cheung and Hamarneh [6] who created a
3D SIFT variant to aid in medical image alignment. Ni et al. [16] also extended SIFT to a
3D formulation, derived from [19], for use in 3D ultrasound panoramic imagery. It is noted
that all of these approaches suffer from a fundamental limitation in their consideration of
orientation - the definition of orientation in 3D is incorrectly taken as the direction formed
by two angles (azimuth, elevation) in [6, 16, 19]. Here, to correctly orientate an object in
3D, we consider three angles - azimuth, elevation and tilt. As shown in Figure 4a, three
angles are required to correctly orientate an object. Figure 4b shows an example of this with
three pistols aiming in the same direction (given by azimuth and elevation) but with differing
orientation (given by the addition of tilt). This prior error of [6, 16, 19] was previously noted
by Allaire et al. [2] and corrected: their subsequent results indicated that the additional
tilt angle improves matching as expected. Noteably this error originated from the work of
[6, 16, 19] as a problem of image registration as opposed to explicit object recognition: a
theme also followed by [2]. Here, by contrast to these earlier works, we fully extend SIFT
to 3D for the explicit application of object recognition, taking into consideration the full
definition of 3D orientation not considered in earlier works [6, 16, 19].

2.1 3D SIFT approach

Initially we follow the approach of Allaire et al. [2] in our 3D SIFT extension with additional
parametric differences. Furthermore we extend this work [2] to the explicit recognition of
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Figure 4: 3D Orientation requires three angles: Azimuth, Elevation and Tilt

objects based on RANSAC driven keypoint match selection, pose estimation and final volu-
metric object verification. We begin this process with initial keypoint location.

Keypoint Location

The first step in traditional 2D SIFT [13] is the calculation of Difference of Gaussian (DoG)
images. Here, given a 3D input volume I(x,y,z) and a 3D Gaussian filter G(x,y,z,kσ) we
form multi-scale Difference of Gaussian (DoG) volumes as follows:

DoG(x,y,z,k) = I(x,y,z)?G(x,y,z,kσ)− I(x,y,z)?G(x,y,z,(k−1)σ) (1)

where k is an integer in the range {1..5} representing the scale index, σ = 3√2 and (x,y,z)
are defined in voxel coordinates. Subsequently a three level pyramid (L = 0,1,2) is built up
by subsampling the Gaussian filtered volume for k = 4 and repeating the process.

In a similar vein to the original 2D SIFT methodology [13], DoG local extrema are then
located. This requires that a voxel be either a maximum or minimum when compared to its
neighbouring voxels. Given that each voxel has a 3× 3× 3 local neighbourhood it follows
that there are 26 voxels for comparison. It is also a requirement that the voxel is a maxima
or minima when compared to the 27 neighbourhood voxels in the scale space DoG volumes
both above and below (k +1, k−1). The locations of these extrema form a candidate set of
interest point locations.

From this candidate set a number of points are rejected for poor contrast if their density is
below a threshold, τc = 0.05 . This removes some erroneous points that are likely to produce
unstable descriptors and additionally, in the case of CT volumes, points associated with metal
artefacts. A second stage of candidate point rejection also takes place for points which are
poorly localized on an edge. These points are likely to produce unstable descriptors in the
presence of noise. A 3× 3 Hessian matrix describes the local curvature at the candidate
point:

H =

 Dxx Dyx Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz

 (2)

where Di j are the second derivatives in the DoG volume. Both [2] and [16] derive a
measure to reject points using the Trace and Determinant of H where:

Trace(H) = Dxx +Dyy +Dzz (3)

Det(H) = DxxDyyDzz +2DxyDyzDxz−DxxD2
yz−DyyD2

xz−DzzD2
xy (4)

It can be shown [2, 16] that the following equation can then be used to reject points:
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Figure 5: Keypoint locations for a typical complex baggage item

Re ject Point i f
Trace3(H)

Det(H)
<

(2τe +1)3

(τe)2 (5)

We use a value of τe = 40 and, hence, points where Trace3(H)
Det(H) < 332.15 are rejected.

Finally a subvoxel estimate of the extrema true location is achieved using quadratic in-
terpolation on the DoG volumetric data. Figure 5 shows some exemplar 3D SIFT keypoints
(in black) after all of these stages of rejection have been performed on a typical complex CT
volumetric image of a baggage item.

Keypoint Orientation

Once a keypoint location is determined the volume gradients are examined in a two stage
process to locally establish an invariant orientation in the subsequent description. A direction
in 3D space is defined by the azimuth and elevation angles whereas an orientation is defined
by the addition of a third angle: tilt (see Figure 4).

The first step is to determine the dominant direction for the keypoint. A 2D histogram is
produced by grouping the Gaussian filtered volume gradients in bins which divide azimuth
and elevation into 45º sections, as shown in Figure 6a (sphere) and Figure 6b (resulting 2D
histogram bins). A regional weighting is applied to the gradients according to their voxel
distance from the keypoint location: we apply a Gaussian weighting of exp

[
−(2r/Rmax)

2
]

for voxels a distance r from the keypoint location. Points further than Rmax voxels from the
location are ignored in the current formulation. From a geodetic viewpoint (Figure 6a) it
can be seen that bins near the equator in this formulation are larger than those at the poles
and this will bias the resulting histogram. This bias is compensated for by normalizing
each histogram bin by its solid angle [19]. The output histogram is then smoothed using a
Gaussian filter to limit the effects of noise and the dominant directions are determined by
searching for peaks and are refined using interpolation. Peaks in this 2D histogram within
80% of the largest peak are also retained as possible secondary directions [13].

The second step is to determine the orientation by calculating the tilt angle for each
derived direction. This is achieved by re-orientating the volume around the keypoint and
calculating a 1D histogram that resolves the gradients orthogonal to the dominant direction.
This histogram is again built in 45º bins using the same regional weighting method as for
the direction histogram. Peaks in the tilt histogram are used, with interpolation, the derive
an estimate of keypoint tilt. Again, peaks within 80% of the largest peak are retained to give
secondary orientations. Overall, in this formulation, we see that keypoints may have more
than one possible orientation that will require description.
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Figure 6: Direction Histogram

Figure 7: 3D SIFT Descriptor Formulation

Keypoint Description

Once the orientation has been determined the point of interest can be described. In our case
we build a Ng×Ng×Ng grid of gradient histograms, with each histogram being computed
from a Nv ×Nv ×Nv voxel grouping as shown in Figure 7a. Each gradient histogram is
derived by splitting both azimuth and elevation into 45º bins, as described in Section 2.1.
Consequently, each descriptor, normalized to unity, contains N3

g N3
v × 8× 4 elements. The

final visualization of such a descriptor is shown in Figure 7b as a 3D grid of gradient his-
tograms.

3 Object Identification
Following from our extension of SIFT into a 3D voxel formulation we follow a traditional
route of object identification following [13] where we search for a reference object in a scene
and use a RANSAC based formulation to identify a given set of consistent matches.

A separate scan of the item of interest being considered was taken from which the item
is then cropped to provide a reference volume. This reference volume is then subjected to
the 3D SIFT generation process creating a reference descriptor set. Figure 8 shows this
reference volume with the location of its keypoints at the 3 resolutions in the earlier scale
space pyramid. It should be noted that this reference is also subject to the CT artefacts and
resolution issues previously discussed (Section 1.1).

Here each example baggage item, when processed as described, will produce a corre-
sponding set of candidate descriptors. The reference descriptors are compared to the candi-
date descriptors by recording the Euclidean descriptor distance between them [13]. Figure
9a shows a histogram of the Euclidean distances measured in a typical candidate bag. A hard

Citation
Citation
{} 

Citation
Citation
{} 



FLITTON, BRECKON, MEGHERBI: OBJECT RECOGNITION USING 3D SIFT 7

Figure 8: Reference item keypoints (in black) at different scale space pyramid resolutions

Figure 9: Euclidean distance matching between reference object and candidate bag

decision is made on these distance values using a fixed threshold, τm, to produce an array of
possible 3D SIFT matches. Figure 9b, 9c and 9d show matches from a reference object to a
candidate bag as the decision threshold, τm, is varied and it can be seen that the number of
matches (both true and false) increase as τm increases.

Given the large number of possible false matches in this formulation (Figure 9) we make
use of RANSAC [8] to find an optimal match between the reference item descriptors and a
subset of the candidate descriptors. RANSAC has been shown to cope well in the presence of
significant outliers (here highly prevalent due to noise). This RANSAC formulation is used
to select a set of three possible matches from which a 3D transformation is derived using a
common place singular value decomposition [3]. An additional constraint is used to enforce
consistency between the relative distances of the transformed reference set and the selected
candidate match points: any relative distance errors greater than δr (δr = 10mm) or location
errors greater than δl (δl = 10mm) will result in the transformation being rejected.

If this relative distance criterion is passed a secondary verification is performed using a
comparison of CT reference to candidate object density. All locations within the reference
object with density above a threshold τd (τd = 0.15) are compared using L1 distance on a
voxel by voxel basis. This is recorded as the verification match metric. Combined with
RANSAC this is used to identify the best candidate match within a complex volume for a
given reference item.
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Figure 10: Histogram of target verification match metric results

Table 1: Object recognition results

4 Results
Results based on our approach are presented using a set of volumes first created from the
original [1.6mm ×1.6mm × 5mm] data domain but subsequently resampled (using cubic
spline interpolation) to form cubic voxels of uniform 2.5mm dimension. We use: Ng = 3 and
Nv = 3 for descriptor generation (Section 2.1); Rmax = 9 for the Gaussian weighting (Section
2.1); τm = 1.2 for the matching decision threshold (Section 3). All data was gathered using
a CT-80 model baggage scanner manufactured by Reveal Imaging Technologies.

A number of target items were used to evaluate the target recognition in a variety of
cluttered baggage CT images. Firstly a revolver type handgun (.357 Magnum, Figure 2/
Figure 8) was concealed in various baggage items producing a set of 21 3D CT scan images.
An additional 25 bag set of negative (target not present) scans were also generated. Over this
combined set (46 CT baggage scans) the match metric (Section 3) was evaluated for each
bag. In Figure 10a we see a histogram of the match metric result over this set which shows
two distinct regions (i.e. peaks) from which a decision threshold on this distribution can be
set to determine target identification. Using a match metric threshold τi (τi = 0.55) over this
distribution (Figure 10a) yields the target detection result shown in Table 1a. Here (Table 1a)
we see a strong result of positive item detection and a few incorrect identifications. Overall
the revolver is correctly located and identified in 90.5% of the examples (19/21) with a low
false positive rate of (0.0%, 0/25). Figure 11 shows the keypoints from the revolver reference
item superimposed into a baggage item indicating correct identification of the target item in
this case.

Noteably, particular items of interest may be dismantled for concealment in the common
place airport baggage screening scenario [20]. Here we consider a dismantled Glock 9mm

Figure 11: Correct identification of revolver
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Figure 12: 9mm pistol frame as target

pistol with solely its frame (handle and trigger) introduced as the target item (Figure 12a).
For this example a number of scans were taken (28 with target; 25 negative). Figure 10b
shows a histogram of the match metric results for this target from which we can see that a
decision threshold is less obvious (than in Figure 10a). Taking a threshold value τi(τi = 0.6)
yields the results presented in Table 1b where we see this more difficult target correctly
located 67% of the time with a low false positive rate (0.0%). Two examples of correct
identification are shown in Figure 12b.

The lesser performance in this secondary example (pistol frame, Figure 12a) can be
attributed to the fact that this item is largely made from plastic with a small amount of metal
where the pistol slide (barrel) would be attached. Here metal artefacts that are generated
as part of the CT scanning process (Section 1.1) have a similar density to genuine parts of
the pistol frame and consequently the 3D image gradients (a key part of the SIFT approach)
around points of interest are more easily corrupted by noise. This makes matching in this
case more complex and is clearly an area for future work. It had been envisaged that the
keypoints derived from the frame of the pistol (target item Figure 12a) would enable location
of a fully assembled pistol. Experimentally this has proved invalid as a complete pistol has
significantly different keypoints in both location and description (Section 2.1) due to the
material changes that occur on reassembly - the pistol frame lacks the internal features that
would be unaffected when the rest of the pistol is attached.

Additionally the combined set of data (21 bags containing revolver; 27 bags contain-
ing pistol frame; 25 bags clear) were combined into a single data set that was processed
to identify any cross related errors of individual item identification. The results of this are
represented as a confusion matrix in Table 2 where we can see a clear diagonal correlation
between the identification of clear bags and of the two targets (revolver/pistol frame) but we
can additionally see a difficulty in the generalized identification of the pistol frame. This
is shown as a precursor to future work in more generalized object recognition within com-
plex CT baggage imagery. Within aviation screening in general [20] the identification of
disassembled weaponry (such as a pistol) is considered to be a challenging task for human
operators and automatic recognition alike.

Overall we can see from these examples the successful recognition of a complex 3D
volumetric object over a set of complex volumetric images using a novel application of an
extension of 3D SIFT to object recognition.
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Table 2: Confusion Matrix of {clear bag, revolver, pistol frame}

5 Conclusion
Our results have shown that the use of 3D SIFT to recognize known objects in complex
CT volumes that contain significant metal artefacts and relatively poor resolution is possible
with a relative degree of success. The detection of a revolver in complex baggage items
shows a high true positive rate (90.5%) and a low false positive rate (negligible) which is a
requirement for an airport baggage screening scenario. However, the relatively poor resolu-
tion coupled with its anisotropic nature leads to issues in the identification of smaller items
and generalized item sub parts (Glock 9mm pistol, Figure 12, Table 1b). This is an area for
future work.

In general the presence of CT artefacts is thought to be the primary cause behind false
matches in the results presented - the image gradients are corrupted thus rendering the SIFT
gradient histograms subject to a large degree of noise. Future work will explore the use
of alternative descriptors that may offer more robustness to this inherent level of noise and
additionally feature preserving volumetric noise removal techniques.

Further testing on a larger data set is required to determine the statistical uncertainty of
the true positive and false positive detection results.
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