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Abstract—X-ray baggage security screening is widely used to
maintain aviation and transport secure. Of particular interest
is the focus on automated security X-ray analysis for particular
classes of object such as electronics, electrical items and liquids.
However, manual inspection of such items is challenging when
dealing with potentially anomalous items. Here we present a dual
convolutional neural network (CNN) architecture for automatic
anomaly detection within complex security X-ray imagery. We
leverage recent advances in region-based (R-CNN), mask-based
CNN (Mask R-CNN) and detection architectures such as Reti-
naNet to provide object localisation variants for specific object
classes of interest. Subsequently, leveraging a range of established
CNN object and fine-grained category classification approaches
we formulate within object anomaly detection as a two-class
problem (anomalous or benign). Whilst the best performing
object localisation method is able to perform with 97.9% mean
average precision (mAP) over a six-class X-ray object detection
problem, subsequent two-class anomaly/benign classification is
able to achieve 66% performance for within object anomaly
detection. Overall, this performance illustrates both the challenge
and promise of object-wise anomaly detection within the context
of cluttered X-ray security imagery.

Index Terms—anomaly detection, object detection, X-ray im-
agery, fine-grained classification

I. INTRODUCTION

X-ray baggage security screening is widely used to maintain
aviation and transport secure, itself posing a significant image-
based screening task for human operators reviewing compact,
cluttered and highly varying baggage contents within limited
time-scales. With both increased passenger throughput in the
global travel network and an increasing focus on wider aspects
of extended border security (e.g. freight, shipping postal),
this poses both a challenging and timely automated image
classification task.

To facilitate effective screening, threat detection via scanned
X-ray imagery is increasingly employed to provide a non-
intrusive, internal view of scanned baggage, freight, and postal
items. This produces colour-mapped X-ray images which
correspond to the material properties detected via the dual-
energy X-ray scanning process [1]. Whilst current automatic
threat detection within X-ray security screening concentrates
on material discrimination for explosive related threats [1],
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Fig. 1. X-ray security imagery of exemplar electronics items with a high-
lighted (red box) concealed anomalous region in (A) laptop and (B) toaster.

a growing body of work illustrates the potential of CNN
architectures for broader object based threat detection [2]–
[4]. In both occurrences, threat detection performance must
be characterised by high detection and low false alarm rates
for operational viability.

Within this context, of particular interest are electronics,
electrical items and liquids [5]. Not only do these items come
in many evolving variants but they are additionally packed
in complex and cluttered surroundings leading to a complex
X-ray image interpretation problem.

Whilst existing security scanners use dual-energy X-ray for
materials discrimination, and highlight specific image regions
matching existing threat material profiles [6], [7], the detec-
tion of generalized anomalies within complex items remains
challenging [8] (e.g. Fig. 1).

Within machine learning, anomaly detection involves learn-
ing a pattern or distribution of normality for a given data
source and thus detecting significant deviations from this
norm [9]. Anomaly detection is an area of significant in-
terest within computer vision, spanning biomedical imaging
[10] to video surveillance [11]. In our consideration of X-
ray security imagery, we are looking for abnormalities that
indicate concealment or subterfuge whilst working against a
real-world adversary who may evolve their strategy to avoid
detection. Such anomalies may present (or conceal) themselves
within appearance space in the form of an unusual shape,



texture or material density (i.e. dual energy X-ray colour) [12].
Alternatively they may present themselves in a semantic form,
where the appearance of unfamiliar objects either globally or
locally within the X-ray image [13].

Considering the notable challenge of detecting such subtle
anomalies globally within the image, we instead follow a
human-like approach to illustrate an automated pipeline for
the object-wise screening of such items - focus on locating
the object within the scene (image) first, then determine if the
object is anomalous or not ?

By leveraging recent advances in object detection and clas-
sification in X-ray security imagery [2]–[4], we propose a dual
CNN architecture to firstly isolate liquid and electrical objects
by type and subsequently screen them for abnormalities. The
main contribution of this work is a dual CNN architecture
for object-wise anomaly detection, which jointly leverages
state-of-the-art joint object detection and segmentation [14]
for first stage object localisation and subsequently coonsiders
second stage anomaly detection as a simple two-class CNN
classification problem within cluttered X-ray security imagery.

II. RELATED WORK

There has been a steady increase in research work consid-
ering object based threat detection in X-ray baggage security
imagery. Rogers et al. [1] performs a comprehensive review
of the field, including baggage and cargo imagery. In this
section, we will focus on supervised learning for automated
threat detection and anomaly detection within X-ray security
imagery.

A. Automated Threat Detection in X-ray Imagery

Early work on X-ray security images is based on hand-
crafted features such as Bag-of-Visual-Words (BoVW), which
is applied together with a classifier such as a Support Vector
Machine (SVM), achieving a performance of 0.7 recall, 0.29
precision, and 0.57 average precision [15]. Turcsany et al. [16]
extend the approach by using BoVW with SURF descriptor
and SVM classifier yields 0.99 true positive and 0.04 false
positive rates. Subsequently, BoVW is further evaluated for the
single and dual-view X-ray images [17], with optimal average
precision achieved for firearms (0.95) and laptops (0.98). The
various feature point descriptors within BOVW is explored
thoroughly in the work of [18], where the best the combination
achieves 94.0% accuracy with two classes of firearm detection
using an SVM classifier.

Recent CNN-based deep learning architectures [19]–[22]
have significantly improved the object detection in X-ray
security imaging [4], [23], [24]. Earlier work on CNN in X-ray
imaging [2] explore the use of transfer learning from another
network trained on a classification task. Experiments show that
CNN with transfer learning achieves superior performance,
99.26% on true positive and 4.08% on false positive, only
by fine-tuning the network. Broader experimentation in [4]
empirically proves the superiority of fine-tuned CNNs over
the classical machine learning algorithms.

B. Automated Anomaly Detection in X-ray Imagery

Sterchi et al. [25] show that security officers are able to
detect the abnormality better when they focus on detecting
each object in the bag as benign rather than concentrating
on threat items. By the same analogy, the anomaly detection
algorithms proposed in the field are trained on benign samples
to learn what is normal and tested on both normal and
abnormal images to detect threats.

Prior work on appearance and semantic anomaly detection,
has considered unique feature representation as a critical
component for detection within cluttered X-ray imagery [26].
Early work on anomaly detection in X-ray security imagery
[27], implements block-wise correlation analysis between two
temporally aligned scanned X-ray images. More recently [28],
anomalous X-ray items within freight containers have been
detected using auto-encoder networks, and additionally via the
use convolutional neural network (CNN) extracted features
as a learned representation of normality across stream-of-
commerce parcel X-ray images [26]. Andrews et al. [29]
propose representational-learning for anomaly detection within
cargo container imagery. In a similar vein, the work of [30] fo-
cuses on the use of a novel adversarial training architecture to
detect anomalies based on high reconstruction errors produced
by a generator network adversarially trained on non-anomalous
(benign) stream-of-commerce X-ray imagery only. In follow-
up work, [31] proposes another unsupervised anomaly de-
tection approach, whereby the use of skip connected layer
design allows to train much higher resolution images and
optimizing latent space within the discriminator network leads
to significantly better results.

By contrast, here we consider a two-stage approach that
first isolates potential objects of interest within the X-ray
security image, as an object detection and classification prob-
lem (Section III-A), prior to secondary anomaly detection via
application of CNN based image classification (Section III-B).

III. PROPOSED APPROACH

Our dual CNN architecture performs two stages of analysis:-
(a) primary object detection within the X-ray image (Section
III-A); and (b) secondary classification of each detected object
via a two-class, fanomaly; benigng, classification formula-
tion (Section III-B). An overview of our overall dual CNN
architecture is shown in Fig. 2.

A. Detection Strategy

We consider a number of contemporary CNN frameworks
for our primary object detection strategy to explore their
applicability and performance for generalised object detection
within the context of X-ray security imagery. Namely we
consider Faster R-CNN [32], Mask R-CNN [14] and RetinaNet
[33] with internal architectures as illustrated in the Fig. 3.
These are evaluated over a six class object detection and
localisation problem comprising of fbottle, hairdryer, iron,
toaster, mobile, laptopg items packed within cluttered X-ray
security baggage imagery.



Fig. 2. Our dual CNN architecture for object-wise anomaly detection in complex X-ray security imagery.

Faster R-CNN is based on a two stage internal architecture
[32], as shown in Figure 3(A). The first stage consists of
a Region Proposal Network (RPN) that proposes regions of
interest to a secondary classification stage. The RPN consists
of convolutional layers that generate set of anchors with
different scales and aspect ratios, and predict their bounding
box coordinates together with a probability score denoting
whether the region is an object of interest or background.
Anchors are generated by using a fixed set of nine standard
axis-aligned bounding boxes in three different aspect ratios and
three scales, which are defined at every location of the feature
maps. These features are then fed into objectness classification
and bounding box regression layers. Witin the second stage,
the objectness classification layer classifies whether a given
region proposal is an object or a background region while a
bounding box regression layer predicts object localisation, at
the end of the overall detection process.

Mask R-CNN is an extension of the Faster R-CNN archi-
tecture for combined object localisation and instance segmen-
tation of image objects [14]. Mask-RCNN similarly relies on
a region proposals which are generated via a region proposal
network. Mask-RCNN follows the Faster-RCNN model of a
feature extractor followed by this region proposal network,
followed by an operation known as ROI-Pooling to produce
standard-sized outputs suitable for input into a secondary
classifier. The main differences between Mask-RCNN and
Faster-RCNN relies on three factors. Firstly, Mask-RCNN
replaces the ROI-Pooling operation used in Faster-RCNN with
an operation called ROI-Align that allows very accurate in-
stance segmentation masks to be constructed. Secondly, Mask-
RCNN adds a network head (a small fully convolutional neural
network) to produce the desired instance segmentation, as in
the Fig. 3(B). Finally, segmentation and classification label
predictions are decoupled; the mask network head predicts the
instance segmentation independently from the network head
predicting the classification label for the object that is being
segmented.

RetinaNet is a one-stage object detector proposed by Lin
et al. [33], where the author identified that class imbalance

are the critical reasons why the performance of single stage
detector architectures such as YOLO [34] and SSD [35] lag
behind two stage detector architectures such as Faster R-CNN
and Mask R-CNN. To improve the performance, RetinaNet
employs a novel loss function called Focal Loss, which allows
it to focus more on class imbalance samples. Using a one-stage
network architecture with Focal Loss, RetinaNet achieves
state-of-the-art performance in terms of accuracy and running
time. Figure 3(C) depicts the overall architecture of RetinaNet,
which is composed of a backbone network and two sub-
networks. The backbone network is responsible for computing
a convolutional feature map using Feature Pyramid Network
(FPN) over an entire input image. Subsequently, the first
subnet performs labsl classification on the backbones output,
while the second subnet performs convolution bounding box
regression (i.e. localisation). Focal loss is applied as the loss
function as shown in the Fig. 3(C).

B. Classification Strategy

After detecting the candidate objects of interest within X-
ray security imagery based on our detection strategy (Sec-
tion III-A), our secondary classification strategy determines
whether the object localized within the image is fanomaly,
benigng as a two class classification problem.

In doing so, we leverage transfer learning both from a set of
seminal CNN object classification architectures (SqueezeNet
[36], VGG-16 [37], ResNet [20]) pre-trained on ImageNet [38]
following the X-ray classification methodology of [2], and a
CNN architecture specifically designed for fine-grained (i.e.
sub-class) classification tasks [39].

We specifically adopt fine-grained classification for anomaly
detection, where we define benign and anomalous as sub-
categories (sub-classes) of the main object type detected (Sec-
tion III-A). Within the literature, fine-grained classification
usually aims to distinguish subordinate visual categories to
the main object class such as determining natural categories
such as species of birds [40] [41], dogs [42] and plants [43].

In the case of our fanomaly, benigng classification problem,
the key to successful fine-grained classification lies in devel-



Fig. 3. Architecture of the CNN based detection approaches evaluated: (A)
Faster R-CNN [32] (B) Mask R-CNN [14] (C) RetinaNet [33].

oping an automated method to accurately identify informative
regions in an anomalous item, and whether each such region
belongs to an anomalous region or benign region of the overall
object.

However, labelling the discriminate regions requires sig-
nificant manual annotation and is therefore difficult to scale
effectively. To avoid this issue, we specifically utilise fine-
grained classification based on learning a discriminative filter
bank within a CNN framework in an end-to-end manner
without the need for explicit additional object annotation [39].
This approach enhances mid-level representational learning
within the CNN architecture, by learning a set of convolution
filters such that each is initialised and discriminatively trained
in order to capture highly discriminative sub-image patches.
Based on the the VGG-16 network architecture [37], filters are
additionally added at the 10th convolutional layer representing
image patches as small as 92� 92 with stride of 8 [39].

IV. EXPERIMENTAL SETUP

In this section we introduce the dataset, evaluation criteria
and CNN training details used in this work.

A. Dataset

We construct our dataset using single-view conventional X-
ray imagery with associated false colour materials mapping
from dual-energy [44]. Our X-ray images consist of benign
and anomalous items, such as laptop, mobile, toaster, iron,
hairdryer and bottle. To introduce anomalies, we insert marzi-
pan, screws, metal plates, knives and alike inside these objects
as depicted in Fig. 1. All X-ray imagery is gathered locally
used a Gilardoni dual-energy X-ray scanner (FEP ME 640
AMX, [45]).

Each of the anomalous item is placed inside various clut-
tered baggage items, which cover the full range and dimen-
sions found in aviation cabin baggage, ensuring the set of bags
is a good representation of such items typically presented at
the aviation checkpoint security. In total, the number of X-ray
images after scanning of each bags is 3534 images.

B. Evaluation Criteria

For object detection, the performance of the models is
evaluated by mean average precision (mAP), as used in the
seminal object detection benchmark work of [46]. In order to
calculate mAP, we calculate the area of intersection over union
for the given ground truth and detected bounding box for each
detection as:

	(Bgti ; Bdti) =
Area(Bgti \Bdti)

Area(Bgti [Bdti)
(1)

where Bgti and Bdti are ground truth and detected bounding
box for detection i, respectively. Assuming each detection
as unique, and denoting the area as 	(Bgti ; Bdti), we then
threshold it by the range of � = :50 : :05 : :95 giving the
logical bi, where:

bi =

{
1; �min < 	(Bgti ; Bdti) < �max

0; ai < �min:
(2)

Given both true positive and false positive as ti and fi, where:

ti =ti�1 + bi

fi =ti�1 + (1� bi)
(3)

The precision pi and recall ri curves can be calculated as:

pi =
ti

ti + fi

ri =
ti
np

(4)

where np is the number of positive samples. We can calculate
average precision (AP) based on the area under the curve of
precision versus recall:

AP =

nd∑
i

pi 4 r (5)

Subsequently, we can get the value of mAP by averaging AP
values for all classes, C:

mAP =
1

C

C∑
c=1

APc (6)

For anomaly detection via classification, our model perfor-
mances are evaluated in terms of Accuracy (A), Precision (P),
Recall (R), F-score (F1%), True Positive (TP%), and False
Positive (FP%).


