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Figure 1. Our postal mail screening architecture uses dual-energy X-ray and visible-band imagery. X-ray images are processed via an Open-

World Object Detector to identify potential objects, which are then processed via an Anomaly Detection Network from which detected

anomalous objects are segmented using a Foundational Segmentation Model to obtain precise shape. Subsequently, detected masks are

overlaid onto the corresponding visible-band image, via a cross-modal homography, for final presentation to the screening operator.

Abstract

Automatic detection of prohibited items in X-ray imagery

plays a vital role in ensuring public safety, particularly in

high-throughput venue, transport and postal (border) secu-

rity. Existing Automatic Prohibited Item Detection Systems

(APIDS), based on supervised object detection approaches,

are primarily designed for venue and transport screening

operations security, where individual baggage items are

screened in a controlled manner. However, postal mail

screening presents unique challenges due to both of the con-

tinuous flow of items, and the desire for high-throughput

screening of postal mail items in an unordered and un-

structured manner on existing conveyer systems, making the

adaptation of current APIDS solutions impractical. To ad-

dress these challenges, we propose a framework leveraging

open-world object detection and semi-supervised anomaly

detection as a conduit to effective screening in this con-

text. Our approach jointly uses an open-world object de-

tector to detect generic objects within the cluttered X-ray

imagery, followed by a secondary anomaly detection net-

work that identifies outlier objects in a class-agnostic man-

ner. Specifically considering the context of postal screen-

ing, experimental results on a UK government evaluation

dataset and a locally collected in-house Postal Mail (Par-

cel) dataset demonstrate the efficacy of our method, achiev-

ing high recall (77.76%) and accuracy (75.93%) with low

false positive rates (1.98%), thus illustrating future poten-

tial in automated postal screening for firearms and firearms

components.

1. Introduction

Firearm-related crime, including the illegal import of

firearms via postal mail, poses a significant threat to UK so-

ciety [8, 9, 41]. According to the most recent public report

by the UK Chief Inspector of Borders and Immigration [29],

UK Border Force operations at major international postal

hubs recorded 1,250 firearm seizures (excluding ammuni-

tion) over the 2015/16 period. While significant progress

has been made in detecting firearms and firearm compo-

nent within aviation security via Automatic Prohibited Item

Detection Systems (APIDS) [18, 40, 53], postal screening

at scale poses a number of additional challenges in terms

of volume and complexity, and hence remains reliant on

an intelligence-driven manual search and seizure strategy,

lacking APIDS solutions capable of screening the large va-

riety of items in postal transit without incurring a significant

false alarm rate.

APIDS is widely employed across aviation and trans-

portation sectors to detect prohibited items by analyzing X-

ray imagery of baggage, freight, and transportation hubs,

via the use of X-ray security screening [1, 6, 39]. The

advancement of deep learning algorithms within Convolu-

tional Neural Network (CNN) based methods has proven

to be effective in detecting a wide range of object classes



in X-ray security screening [6, 10, 11, 18, 40, 53]. In this

context, several benchmarks for aviation security inspection

have been developed [38, 40, 54, 58]. Whilst the current

performance of APIDS heavily depends on the availabil-

ity of suitable X-ray imagery datasets with sufficient ob-

ject annotations, diversity and scale, public datasets such as

GDXray [38], SIXray [40], PIDray [58] or OPIXray [54]

have significantly advanced the development of prohibited

item detection in X-ray images using CNN based methods

[6, 13, 22, 36, 46, 53].

Notwithstanding the advancements in aviation security,

current APIDS solutions may not translate well to a postal

screening setting. While X-ray technology is utilized for

postal screening at border security [48, 49], its opera-

tional deployment differs significantly from aviation secu-

rity. For instance, in an aviation security environment, bag-

gage items are screened individually in a controlled, one-

by-one process at security checkpoints. By contrast, high-

throughput mail screening must accommodate unstructured,

mixed arrays of postal items continuously moving through

mail handling facilities without incurring a significant false

alarm rate. The unconstrained nature of high-throughput

postal screening also gives rise to a related challenge of

identifying the corresponding postal item within the mixed

array of mail on the conveyor belt to the one within which

a potential was detected (i.e. “which parcel is it?” ).

As an exemplar, we specifically aim to address the chal-

lenges of firearm and firearm component detection within

cluttered and complex X-ray security imagery, representa-

tive of ‘stream of commerce’ fast postal mail screening op-

erations as a semi-supervised anomaly detection problem.

This is achieved by leveraging two primary deep learning

architectures: 1) class agnostic object detection to individ-

ually separate postal mail items on the conveyor, 2) and an

anomaly detection approach to detect outlier items on an

object-wise basis. Here we examine the application of the

object localisation network (OLN) architecture [33], that

leverages an open-world object detector (OWOD), in order

to localize unseen objects without prior class supervision.

Whilst classic object detectors [12, 43, 51] are focused on

detecting objects from a set of known categories, OWOD

[23, 33, 59] naturally capture both known and unknown ob-

jects, and hence are well suited to the unconstrained na-

ture of objects that occur in ‘stream of commerce’ postal

screening. A key advantage of the proposed approach

is that it has no inherent requirement for labelled train-

ing data and will readily process the (noisy and cluttered)

postal mail X-ray security into individual objects/regions ir-

regardless of the nature or distribution of the highly varied

items present. These individual objects/regions are subse-

quently passed to the secondary anomaly detection network

which serves as the basis for training contemporary semi-

supervised anomaly detection approaches in an object-wise

manner, such that anomalous objects can be detected as

“never seen before” in postal mail screening.

In addition, a cross-modal homography mapping be-

tween the X-ray image, within which the anomalous ob-

ject has been detected, and the corresponding visible-band

image of the postal mail (parcel) on the conveyance sys-

tem facilitates overlay of segmented items (via [34]) onto

the corresponding visible-band imagery for presentation to

a security operator to assist on-conveyor identification.

2. Literature Review

APIDS are increasingly being deployed as an operational

capability within aviation security, benefiting significantly

from advancements in deep learning [2]. Earlier approaches

use CNN either as feature extractors or classifiers, usually

using small regions obtained via a sliding window approach

[4, 32]. For instance, Jaccard et al. [32] train a CNN clas-

sifier via threat image synthesis of firearms in empty con-

tainers for cargo verification whilst [4] address a range of

six prohibited items using a patch-based CNN approach.

Rogers et al. [44] use a dual-energy CNN for firearm de-

tection using synthetic data in a sliding window paradigm.

Since the complex nature of X-ray security data makes it

difficult to collect large datasets that enable training deep

CNN, Akçay et al. [6] study the transfer learning paradigm

to train fully CNN for prohibited item detection.

Several studies have used modern supervised object

detection architectures for threat item detection. Akçay

and Breckon [3] conducted a comprehensive evaluation

of region-based detection architectures [15, 20, 21, 43].

Franzel et al. [17] propose a multi-view region CNN (R-

CNN) to leverage the multi-view nature of X-ray security

scanners in airports. Similarly, Isaac-Medina et al. [30] use

the eipolar geometry of multiple views to constrain object

detection. While these works are based on private or propri-

etary datasets, the availability of large-scale public datasets

with extensive annotated X-ray imagery has accelerated se-

curity screening applications. For instance, SIXray [40] ad-

dresses the challenges of class imbalance and X-ray image

complexities through a class-balanced hierarchical refine-

ment approach. OPIXray [54] enhances feature representa-

tion by introducing a de-occlusion attention module to mit-

igate occlusions in X-ray imagery. Meanwhile, PIXray [37]

contributes a diverse dataset of prohibited items and intro-

duces a dense de-overlap attention snake for improved seg-

mentation. These datasets have significantly advanced the

development of prohibited item detection in X-ray imagery

[6, 13, 22, 25–27, 36, 46, 53]. Isaac-Medina et al. [31] pro-

vide a comprehensive study of how these datasets are differ-

ent from visible imagery datasets and how object detection

architectures are affected.

Despite significant advancements in APIDS, existing

methods are predominantly designed for aviation security,



with limited research addressing X-ray security screening

in other transportation hubs, such as cargo and freight

terminals. Notably, postal mail screening operations re-

main largely unexplored, leaving a critical gap in auto-

mated threat detection beyond airport security in terms of

addressing the additional challenges of complexity, variety

and mixed unconstrained screening presentation. Another

concern is that in real-world security screening, prohibited

items range from visually distinct objects to highly con-

cealed threats, making detection inherently complex. By

contrast, existing APIDS approaches assume a small set of

prohibited items relying on supervised learning with known

object categories to identify occurrences. This contrasts

sharply with operational reality, where previously unseen

(unlabeled) objects frequently appear, and genuine anoma-

lies are rare, yet often important to detect, occurrences.

To address these limitations, this paper presents a frame-

work for anomaly detection in postal mail, specifically fast

parcel (UK terminology), screening operations, without de-

pendence on predefined class labels within the ‘stream of

commerce’ postal items being screened. Our proposed ap-

proach integrates two complementary sub-architectures: (1)

Class-Agnostic Open-World Object Detection (Sec. 3.1),

which identifies objects without reliance on known cate-

gories, and (2) Anomaly Detection (Sec. 3.2), which dis-

cerns deviations from normal postal mail contents.

3. Methodology

Our proposed solution consists of the combination of two

architectures for different tasks that jointly enable class-

agnostic object-based anomaly detection. First, an OWOD

is used to detect all possible objects within the scene. Sub-

sequently, the detected object regions are passed to the

anomaly detection network to learn the normal distribu-

tion. During inference, the class-agnostic detector isolates

the individual objects within X-ray imagery such that the

anomaly detector identifies them as normal or abnormal.

The overall operational architecture for class-agnostic

anomaly detection within the context of X-ray based postal

mail screening is shown in Fig. 1. Initially, postal mail

is scanned with a dual-energy X-ray scanner to capture

pseudo-colour X-ray images. These images are then pro-

cessed by a class-agnostic OWOD that detects all potential

objects within the images (Sec. 3.1). Identified objects are

subsequently isolated and passed on to an anomaly detec-

tion model (Secs. 3.2 and 3.2.1), which determines whether

they are anomalous or benign. The bounding box coordi-

nates of detected anomalies prompt a Foundational Seg-

mentation Model [34] to generate precise object instance

masks that detail the precise shape and position outline

[19] of potential anomalies within each postal mail (par-

cel) item. Additionally, based on a wide-lens visible-band

(RGB) camera at the exit of the X-ray scanner tunnel, we

map these instance masks as overlays onto the visible-band

images via a cross-modal homography transform, enabling

the identification of the abnormal objects within the postal

mail as they appear on the conveyance system from the X-

ray scanner (Sec. 3.3).

3.1. Class Agnostic Open World Object Detector

In order to detect anomalies within X-ray security imagery

from postal mail (parcel) screening, an object detector ca-

pable of localising all objects, including those belonging to

unknown classes that are not explicitly present in any train-

ing dataset, is required. To this end, we adopt the object lo-

calisation network (OLN) architecture [33] to identify and

localize objects within the image. As shown in Fig. 2, the

OLN consists of a two-stage detector with a region proposal

network (RPN) [43], a bounding box regression branch and

an optional mask branch. In this context, given postal mail

(parcel) X-ray imagery, x ∈ R
H×W×3, a 2D feature map

f = ψ(x), f ∈ R
H′

×W ′
×C is extracted by a backbone net-

work ψ. Subsequently, the RPN predicts a set ofN proposal

bounding boxes P = {p1, p2, . . . , pN} , pi ∈ R
4. Each

object candidate pi = (x, y, w, h) is parameterised by one

point (x, y), usually the top-left corner, and the bounding

box width w and height h. Finally, the RPN in OLN re-

gresses the centerness [47] ci of the bounding box aiming

to achieve a maximal overlap with the ground truth bound-

ing box as a measurement of proposal quality. Additionally,

the bounding box parameters of valid proposals, for exam-

ple, those with an intersection over union (IoU) greater than

a threshold, are also regressed. L1 losses are used for both

the centerness and the box parameters. The RPN loss is

subsequently thus defined as:

LRPN =
1

N

N
∑

i

LL1(ci, ĉi) + 1objLL1(pi, p̂i) , (1)

where 1obj is 1 if the proposal is matched against a ground

truth (0 otherwise). Subsequently, the proposal features ui

are extracted from f using RoIAlign [43]. These features

are then fed into a shared network g() producing an object

representation vi = g(ui) ∈ R
d. Similarly to the RPN, a

bounding box branch regresses the box quality bi and the

bounding box parameters p using L1 losses. The bounding

box loss is then:

Lbbox =
1

Nv

Nv
∑

i

LL1(bi, b̂i) + LL1(pi, p̂i) , (2)

whereNv is the number of valid proposals and the box qual-

ity bi is measured by the IoU with the ground truth.

The bounding box confidence is calculated as si =
√

(cibi), and these bounding boxes, which constitute be-

nign objects, D will form an input set to our proposed

anomaly detection model in the next section.
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Figure 2. Our proposed architecture for open-world anomaly detection combines the object localisation network (OLN), and semi-

supervised anomaly detection network.

3.2. Anomaly Detection

Given the relatively large volumes of non-anomalous (nor-

mal) objects returned from the previous stage, the initial

goal is to model this distribution of benign (object) image

samples, D, in order to learn a feature embedding (i.e., man-

ifold), such that we can subsequently detect abnormal sam-

ples, D̂, as outliers during the inference stage.

Each anomaly detection model, f(), learns the data dis-

tribution of benign (object) image samples by minimising

the anomaly score A(x) over the training data set, itself

comprising benign object instances only. For a given test

image x̂, a high anomaly score of A(x̂) indicates the pres-

ence of anomalies within the image. The evaluation criteria

for this is to threshold (φ) the score, where A(x̂)> φ indi-

cates the presence of an anomaly.

3.2.1. Semi-Supervised Anomaly Detection Approaches

A contemporary paradigm to addressing anomaly detec-

tion in numerous types of imagery is to perform algorithm

training based solely on normal data samples (i.e. im-

ages of normality) in what is often denoted as a “semi-

supervised” approach [5]. Given the challenges of com-

prehensive anomalous data collection within the context of

postal screening, here we leverage this approach by down-

selecting approaches that do not require anomalous exem-

plars for training. In particular, we explore four families of

approaches: (i) one-class feature-based classification, (ii)

reconstruction-based distribution learning, (iii) flow-based

model and (iv) student-teacher based methodology; that

form the basis for the down-selected set of anomaly detec-

tion algorithms subsequently evaluated for the task in hand.

One-class classification [7] refers to methods that learn

a feature manifold for normal data while constraining the

manifold to be as compact as possible. At test time, any data

mapped outside the learned manifold is classified as anoma-

lous. Deep Feature Kernal Density Estimation (DFKDE)

[7] is a one-class anomaly classification algorithm that in-

cludes a deep learning-based feature extraction using a pre-

trained ResNet-50 [28] backbone and an anomaly classifi-

cation stage featuring Principal Component Analysis (PCA)

and Gaussian Kernel Density Estimation (KDE). Initially,

normal images are processed through ResNet-50 to produce

a feature vector of length 2048 from the average pooling

layer. These features are then reduced to 16 principal com-

ponents via PCA, which transforms high-dimensional data

into a lower-dimensional space retaining most variance. In

the final stage, Gaussian KDE models the distribution of

these PCA-reduced features. During inference, anomalies

are detected when the probability density falls below a pre-

set threshold, indicating the presence of an anomaly against

the data distribution learned from the training dataset.

Reconstruction-based approaches [5] [56] [57] use au-

toencoder neural network architectures in order to learn

how to reconstruct images from the normal data distribution

via a compressed encoder-decoder representation. These

are similarly trained exclusively on normal data samples

and such that a poor reconstruction of a given example

at test time is used to detect the presence of anomalous

image regions. Generative Adversarial Network Anomaly

(GANomaly) [5] utilises a GAN to successfully recreate

normal regions while failing to handle anomalies. These

methods are trained exclusively on images without anoma-



lies and typically involve manual post-processing steps

to pinpoint the anomalies, which limits the potential to

optimise feature extraction for enhanced detection effi-

ciency. Conversely, Discriminatively Trained Reconstruc-

tion Anomaly Embedding Model (DRAEM) [56] and Dual

Subspace Re-projection Network (DSR) [57] learn a com-

bined representation of an anomalous image and its nor-

mal reconstruction, while also establishing a clear deci-

sion boundary between normal and anomalous cases. This

method allows for direct localisation of anomalies without

requiring complex post-processing, and it can be trained

with straightforward and broad-based anomaly simulations.

Flow-based approaches [55] [45] are used to learn trans-

formations between data distributions. This is achieved by

first extracting features that do not contain anomalies from a

pre-trained network and mapped by a trainable flow model

to fit a uniform Gaussian distribution. In Unsupervised

Anomaly Detection and Localisation via 2D Normalising

Flows (FastFlow) [55] a two-dimensional normalising flow

is employed to independently process feature maps at each

scale and averages the results at the end. Fully Convolu-

tional Cross-Scale Normalizing Flow (CS-Flow) [45] intro-

duces a new kind of normalising flow model that jointly

processes multiple feature maps across different scales. For

each of the flow-based models, during the testing phase, the

normalising flow model is employed to accurately assess the

likelihood of a test image. Images that are anomalous will

typically fall outside this distribution and therefore exhibit

a lower likelihood compared to normal images.

In the student-teacher methodology [16] [52], the teacher

acts as the feature extractor during the training phase and

imparts knowledge to the student model. Reverse Distilla-

tion (RD) [16] and Student Teacher Feature Pyramid Net-

work (STFPM) [52] use a single pair of teacher encoder

and student decoder networks. In RD, the student network

does not directly process raw images; instead, it uses the

class embedding from the teacher model as input and aims

to reconstruct the teacher multi-scale representations. For

both models, during inference, the teacher generates fea-

tures that are unfamiliar to the student if an abnormal image

is presented, hindering the student network from accurately

replicating these features. Therefore, the disparity in fea-

tures between the teacher and the student networks becomes

the key factor for identifying anomalies.

3.3. Cross-modal Homography Recovery

In parallel to X-ray postal mail scanning, visible images

of the same postal mail (parcel) items are captured using a

wide-lens visible-band (RGB) camera fitted at the exit of the

X-ray scanner tunnel. The camera is placed such that it is

parallel to the imaging plane of the X-ray scanning system.

As both the X-ray and visible images represent the same ob-

jects lying in the same plane (the X-ray scanner belt plane),

we employ a homography transform from the X-ray imag-

Figure 3. Cross-modal feature point correspondences are obtained

across a number of exemplar images in both the X-ray and visible-

band imaging modalities using a tailored cross-modal calibration

target, from which homography estimation is then performed.

ing plane to that of the visible camera, such that the pre-

dicted instance masks from the X-ray images can be readily

mapped onto the visible images in the corresponding posi-

tion of occurrence. We formulate this transformation from

the X-ray imaging plane to that of the camera as:

xvisible = Hxxray , (3)

where x is the point in homogeneous coordinates from ei-

ther of the X-ray or imaging source and H is a 3×3 homog-

raphy matrix [24]. The homography transform, H between

the two imaging planes is recovered via least square error

minimization of the feature reprojection error from matched

features across imagery from both domains based on the

use of a specially designed cross-modal calibration target,

as shown in Fig. 3.

Ultimately, the homography matrix is used to map the

position of potential anomalies detected in the X-ray image

to the corresponding position in the visible image, as illus-

trated in Fig. 1. This integration ensures that anomalies

detected in X-ray images are accurately highlighted in the

corresponding visible images, enhancing operator ability to

identify and assess these irregularities.

4. Results

This section presents the dataset used for evaluation, imple-

mentation details and final evaluation results.

4.1. Datasets

We perform our quantitative evaluation using UK govern-

ment evaluation dataset (available upon request from UK

Home Office / UK Defence Science Technology Laboratory

(DSTL)) [50]. This dataset comprises of both expertly con-

cealed firearm (threat) items and operational benign (non-

threat) imagery from commercial X-ray postal mail secu-

rity screening operations on the UK. with a total of 207,337

training images (benign) and 4,500 test images (threat).

The firearm (threat) item comprise of three categories, full

weapon (firearm in its normal, operational form), set (full

weapon disassembled in to its base components) and indi-



vidual (single component). For our experiments, we con-

sider only the individual category, which consists of firearm

components {barrel, bolt assembly, bolt carrier assembly,

casing, central block, cocking handle, magazine, shotgun

internals, slide, spring, spring pin, trigger assembly}.

The dataset encompasses images depicting single objects

as well as complex scenarios with multiple objects, provid-

ing diverse and challenging samples for training and eval-

uation. Subsequently, we perform our qualitative evalua-

tion using a locally constructed in-house postal mail dataset,

comprising a set of parcels with a subset containing disas-

sembled firearms as {firearm components}.

4.2. Implementation Details

Within the UK government evaluation dataset [50], we se-

lect the benign (i.e. non firearm) item as the training set,

whilst the firearm threat containing items are used for test-

ing. Since our anomaly detection framework only accepts

object-based bounding boxes, we first extract a large num-

ber of objects by training OLN [33] (Sec. 3.1) pre-trained on

MS-COCO dataset [35] and fine tuned on SIXRay10 [40],

via the MMDetection framework [14], and therein only re-

tain the localisation information and discard the classifica-

tion labels, following [33]. The OLN is trained via Stochas-

tic Gradient Descent with a learning rate of 0.00252, mo-

mentum of 0.9 and weight decay of 10−4. Finally, we train

the network for 100 epochs with a batch size as 16.

We construct object-centric training examples from de-

tected objects in the benign imagery, according to predicted

bounding boxes. The final dataset consists of a total of

240,000 benign object items, which are used for training.

To explore the impact of the training set size, and to enhance

the utility of the experiment, the training dataset is further

divided into two subsets: a small set with 80,000 images

and a full set containing all 240,000 images. We rescale

all images to a fixed size (256 × 256) and adopt Anoma-

lib [7] as the base framework for anomaly detection. The

test set consists of 4,500 images with an unannotated threat

items present. In this sense, if our pipeline finds at least

one anomalous objects during inference, the whole bag is

labelled as an anomaly instance. Therefore, our evaluation

metrics are based on normal/anomalous bags based on this

rule, since no ground truth annotations are available.

All implementations and visualisation are conducted in

PyTorch [42] framework with a single NVIDIA 1080Ti

GPU. We use the Segment Anything Model (SAM) [34] for

building instance masks, using the detected bounding box as

prompts. For fair comparison and consistency, we use the

same parameters for all experiments; the parameters follow

the defaults used in [7] or within the original work.

4.3. Evaluation Results

Tabs. 1 and 2 report the recall, false positive rate (FPR),

accuracy and area under the receiving operating character-

Method Model ↑ Recall (%) ↓ FPR (%) ↑ Accuracy (%) ↑ AUROCM ↑ AUROCA

Student-
Teacher

RD [16] 45.56 21.11 62.85 0.916 0.754

STFPM [52] 65.22 14.14 75.93 0.929 0.752

Flow
FastFlow [55] 60.42 16.16 72.57 0.889 0.737

CSFlow [45] 36.60 3.53 67.66 0.915 0.743

Reconstruction

GANomaly [5] 77.76 57.08 59.68 0.866 0.719

DRAEM [56] 66.62 31.70 67.49 0.903 0.756

DSR [57] 65.02 20.55 72.51 0.841 0.722

One-Class DFKDE [7] 58.09 18.78 70.09 0.858 0.722

Table 1. Performance of anomaly detection using a smaller set of

training images (80k) tested on the firearm components test set.

Method Model ↑ Recall (%) ↓ FPR (%) ↑ Accuracy (%) ↑ AUROCM ↑ AUROCA

Student-
Teacher

RD [16] 28.76 2.21 64.57 0.927 0.757

STFPM [52] 50.62 8.08 72.05 0.913 0.751

Flow
FastFlow [55] 39.33 11.30 64.94 0.863 0.721

CSFlow [45] 22.91 1.98 61.88 0.921 0.743

Reconstruction

GANomaly [5] 69.47 21.38 74.22 0.858 0.714

DRAEM [56] 59.44 23.62 68.23 0.896 0.796

DSR [57] 76.33 56.48 59.31 0.864 0.727

One-Class DFKDE [7] 43.11 13.46 65.64 0.857 0.721

Table 2. Performance of anomaly detection using a larger set of
training images (240k) tested on the firearm components test set.

istic (AUROC) curve over the UK government evaluation

dataset [50], as explained in Sec. 3.2. For AUROC cal-

culations, and since we use object detections to label bags

as normal/abnormal (Sec. 4.2), we consider two versions

with different anomaly score strategies: AUROCM, where

the bag takes the maximum anomalous score detected, and

AUROCA, where the bag takes the average anomaly score.

We use a detection confidence threshold of 0.6 for the OLN.

The reported FPR score uses an anomaly score threshold

such that 95% of the normal instances are tagged as nor-

mal. In this context, a positive example refers to normal.

Tab. 1 shows the anomaly detection using the small set

of benign training images (80,000 images) and tested on

firearm component images (4,500 images). In detail, CS-

Flow gives the lowest FPR of 3.53% but only achieves an

accuracy of 67.66% due to a small recall being of 36.60%.

FastFlow and DFKDE also give reasonable FPR as low as

16.16% and 18.78% and higher accuracy at 72.57% and

72.51%, respectively. STFPM achieves a balanced per-

formance, delivering a recall of 65.22% and an FPR of

14.14%, achieving 75.93% of accuracy, which is further

supported by having the highest AUROCM of 0.929. Whilst

there is a considerable difference in performance for most

models, it is observed that reconstruction methods, such as

GANomaly, DRAEM and DSR, usually achieve high re-

call, but high FPR. This may be attributed to some anomaly

instances being significantly small in size (spring, spring

pin) and the models are not able to successfully differenti-

ate these small-scale anomalies from general reconstruction

noise when applied to complex and cluttered X-ray security

imagery. The key of STFPM success could be attributed

the hierarchical feature matching strategy, enabling the stu-

dent network to receive a mixture of multi-scale knowledge

from the feature pyramid under stronger supervision from
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Figure 4. ROC curves of different methods varying the predicted anomaly score. (a) 80k images partition, max anomaly score, (b) 80k

images partition, avg anomaly score, (c) 240k images partition, max anomaly score,(d) 240k images partition, avg anomaly score,.

the teacher and thus more successfully enables the detec-

tion of anomalies at varying scales. Figs. 4a and 4b shows

the ROC curves for maximum and average anomaly scores.

A consistently improved performance for reconstruction-

based methods is observed for the maximum ROC curves.

On the other hand, averaged anomaly scores shows a sharp

transition in the ROC curve. Since anomalous bags still

have normal items, averaging the anomaly scores would re-

move the impact of a single detected anomaly, which is why

the AUROCA score shows a decreased performance.

Similarly, Tab. 2 shows the anomaly detection perfor-

mance on full sets of benign training images (240,000 im-

ages). Except from DSR, a considerable decrease of the

FPR is observed for all methods when using the full 240k

dataset, although the recall is also decreased. This effect

is observed because having a more diverse set of normal

objects might cause more confusion between normal and

abnormal objects. Similar to the 80k objects case, recon-

struction models achieve high recall but high FPR. Notably,

student-teacher models achieve high AUROCM, with 0.927

and 0.913 for RD and STFPM, with low FPRs of 2.21%
and 8.08%, respectively. Flow-based approaches such as

CSFlow also reported lower FPR of 1.98%, overall 61.88%
accuracy and AUROCM of 0.921. Additionally, GANomaly

has an increased performance with an accuracy of 74.22%,

with a reasonable FPR, highlighting that this method is ben-

efitted from increased training data. The different behaviour

of each model underscores the trade-offs inherent in these

methods. Finally, Figs. 4c and 4d shows the ROC curves for

this training set partition. While RD, STFPM and CSFlow

are the best models as with the 80k instances case (Fig. 4a),

the separation is clearer, highlighting these methods as their

effectiveness within our pipeline. A similar trend to the 80k

the averaged ROC curve is observed.

Qualitative results are illustrated in Fig. 5 using a lo-

cally constructed in-house postal mail (parcel) dataset that

uses X-ray security imagery collected via a Gilardoni (FEP

ME 640 AMX) dual-energy x-ray scanner and compris-

ing various firearm and firearm components as representa-

tive anomalies within an otherwise benign ‘stream of com-

merce’ set of parcel examples. We can also see that we

have effectively visualized the spatial position of the de-

tected anomalous items on the visible-band image of the

parcels as they appear on the conveyance system using the

homography-based geometric mapping from the X-ray im-

agery and corresponding visible-band (RGB) images. In

some cases, the predicted masks can be noisy (Fig. 5, 6th

row), an effect that has been previously documented for

foundational models in X-ray imagery [19]. The use of bet-

ter foundational models in this image modality is still an

open research direction.

5. Conclusion
In this work, we introduce a semi-supervised class-agnostic

anomaly detection framework tailored for postal mail (par-

cel) screening operations. By integrating open-world ob-

ject detection and semi-supervised anomaly detection, our

approach effectively identifies prohibited items without the

need for extensive annotated datasets whilst also coping

with the variety of complexity of object occurrence within

‘stream of commerce’ postal mail. The experimental results

highlight the robustness of our methodology with normal-

izing flow based anomaly detection methods consistently

achieving low false positive reporting whilst reconstruction

based method are able to achieve higher recall, in detecting

a wide variety of firearm/firearm components under chal-

lenging conditions. This approach not only addresses the

limitations of existing APIDS for postal mail screening op-

erations but also paves the way for further advancements

in anomaly based threat item detection. Future work will

focus on enhancing the scalability of the system, exploring

advanced anomaly detection techniques, and expanding the

framework to other security-critical domains.
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Figure 5. Exemplar anomaly detection from in-house postal mail (parcel) dataset. The first column shows X-ray images captured using

a Gilardoni (FEP ME 640 AMX) dual-energy X-ray scanner. The second column visualizes the detected anomalous items (in red) and

benign items (in green) overlaid on the X-ray imagery. The third column presents the corresponding visible-band (RGB) images with the

detected anomalous item shape outlines mapped via a cross-modal homography transform.
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