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Abstract The detection of cell nuclei for diagnostic pur-
poses is an important aspect of many medical laboratory
examinations. Precise location of cell nuclei can aid in cor-
rect diagnosis and aid in automated microscopy applications,
such as cell counting and tissue architecture analysis. In this
paper, we investigate the use of support vector machine clas-
sification based on Laplace edge features for this task. Com-
pared with existing applications, we used only one type of
cell nucleus images to train the classifier but this classifier
can locate other two types of cell nuclei with different stains
and scales successfully. The results illustrate that such a data
driven approach has remarkable detection and generalization
performance.
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1 Introduction

The cell is the smallest unit of living organisms, and is often
referred to as a building brick of life [1]. The analyses of indi-
vidual cells and cells in groups (tissues) often indicate useful
information about living organisms, physiological and dis-
eased states and the response to therapies. The first step of
automating such diagnosis and analysis is the detection of
individual cells. The cell nucleus is the most conspicuous
organelle found in a eukaryotic cell [1] and thus their detec-
tion facilitates the task of locating cells in a sample.

For lesions that cannot be identified clinically, small tissue
samples (biopsies) are taken and submitted to histopatholo-
gical (microscopic) examination. This consists of visual anal-
ysis performed by expert observers (histopathologists) who
interpret morphological changes in those cells and tissues.
However, such an approach introduces an unavoidable sub-
jective element to histopathological diagnosis because sim-
ple visual observation is unable to quantify the extent of those
morphological features. Consequently, the main aspect of
histopathological diagnosis remains prone to individual dif-
ferences in the perceptual abilities of the observers. This, in
turn, introduces uncertainties in reproducibility (both from
the point of view of intra- and inter- observer variations)
and precludes the use of statistical (and consequently) evi-
dence-based knowledge to inform disease progression and
treatment evaluation.

Numerous approaches have been investigated to achieve
stable, objective and generalized detection of cell nuclei. Tra-
ditional image processing methods have had an extensive
application in this domain. Landini [14] analysed epithelial
lining architecture in radicular cysts and odontogenic kera-
tocysts applying image processing algorithms to follow a tra-
ditional cell isolation based approach. In this application, the
watershed method is applied with the help of morphological
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methods to achieve the segmentation of individual cell nuclei.
This formed the basis for later estimation of tissue layer
level and architectural analysis of oral epithelia [15]. Kruk et
al. [13] applied morphological operations and the watershed
algorithm to extract individual cells from colon tissue. These
cells were then fed into neural network classifiers for subse-
quent recognition of colon cell types achieving a mean dis-
crepancy rate of 6%. Schnorrenberg et al. [25] developed a
computer-aided detection system for tissue cell nuclei in his-
tological sections using adaptive thresholding to locate cells.
Detection and classification of individual nuclei as well as
biopsy grading performance was shown to be promising as
compared to that of two experts. Sensitivity and positive pre-
dictive value were measured to be 83 and 67.4%, respectively.

Recently, with the rapid development of machine learn-
ing algorithms, some medical image processing applications
have adopted further techniques in order to improve detection
and classification performance. Among these algorithms,
Support Vector Machines (SVMs) are broadly known and
have shown a high classification performance on many appli-
cations, including cell yeast cells on suspension in bioreac-
tors [31], blood cell sorting and tissue cells [28], cells in
culture using fluorescent microscopy [29] and on sections of
brain tumors [6]. Wei et al. [31] applied two support vector
machine based classifiers to separate cells from background,
and to distinguish live from dead cells afterwards. These clas-
sifiers displayed high accuracy and stability. They [30] also
developed a machine vision system based on a supervised
learning technique that is able to learn from images of cell
populations and trains a number of classifiers. They subse-
quently employed a SVM classifier to determine the viability
of each tested cell. Rahman et al. [20] applied SVMs to med-
ical image annotation and retrieval achieving an automatic
image annotation accuracy of 56.7% and a retrieval accuracy
of 72.96%. El-Naqa et al. [5] applied SVMs to detect micro-
calcifications in mammogram images, which outperformed
all the other methods considered within the study. A sensi-
tivity as high as 94% was achieved by the SVM method at an
error rate of one false-positive cluster per image. Other algo-
rithms also displayed remarkable performance. Nattkemper
et al. [18] designed a neural cell detection system (NCDS)
for the automatic quantization of fluorescent lymphocytes
in tissue sections. This system acquired visual knowledge
from a set of training cell-image patches selected by a user.
The trained system evaluated an image calculating the num-
ber, the positions and the phenotypes of the fluorescent cells.
The NCDS detected a minimum of 95% of the cells. In our
prior cell nuclei detection work [7], a machine learning based
approach (cascaded Haar classification [27]) was used to
explore the feasibility of using such algorithms to classify
three types of cystic lesions of the jaws: solitary odontogenic
keratocysts, basal cell naevus syndrome associated odonto-
genic keratocysts, and radicular cysts [14,15,26]. In those

experiments a total correct classification rate of 86% was
achieved. That method showed successful detection of indi-
vidual cell nuclei within the pathological slides in addition
to promising classification rates on the cyst subtypes [7].

Despite the growing number of papers on cytology and
image analysis, it is necessary to develop methods of detec-
tion and classification that can be applied to standardised
sample preparation modalities for the ultimate goal of high
throughput sample screening. In this paper, we investigate the
possibility of SVMs detection of nuclei on stained monolayer
cell cultures.

2 Using support vector machine classifiers

2.1 Support vector machines

SVMs, based on the principle of structural risk minimiza-
tion now form a well established approach in the application
of machine learning algorithms and are proving to be par-
ticularly promising when used to construct accurate models
based on large feature spaces [4,9,17]. Particularly, SVMs
deliver state-of-the-art performance in real-world applica-
tions [4,5,8–10,19,31]. They have some superiorities over
other approaches, especially: (a) global minimum solution,
and (b) learning and generalization in huge dimensional input
spaces [4,9]. Essentially, they use a hypothesis space of linear
functions in a high dimensional feature space, trained with a
learning algorithm from optimization theory that implements
a learning bias derived from statistical learning theory. The
aim is to find a hyperplane which can classify two classes
of data correctly, by maximizing the distance between the
two classes of data and the hyperplane, in a space of higher
dimension. From Fig. 1, we can see class 1 and class 2 can be
separated by many hyperplanes but only the optimal hyper-
plane separates two classes with maximum margin. Margin
b and c are shorter than margin a. Those points lying on
the margin generated by the optimal hyperplane are support
vectors.

SVMs [2] perform pattern classification by determining
the separating hyperplane at a maximum distance to the clos-
est points in the training set. These points are called support
vectors. The decision function of the SVM has the form:

f (x) = sign

[
N∑

i=1

αi yi K (x, xi ) + b

]
, (1)

Where x is the data point to be classified, xi are support
vectors, N is the number of support vectors, b is a constant
decided from training and yi ∈ {−1, 1} is the class label of
the support vector xi . The coefficients αi are the solution
of a quadratic programming problem. The margin, which is
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Fig. 1 SVM finds the hyperplane separating two classes with maxi-
mum distance

Table 1 The most popular kernel types

Kernel type Kernel

Linear xT
i x

Polynomial (xT
i x + τ)d

Radial basis function exp(−||x−xi ||2
2σ 2 )

Sigmoid tanh(κxT
i x + θ)

the distance of the support vectors to the hyperplane, is thus
given by:

M = 1√∑N
i αi

(2)

The margin is an indicator of the separability of the data
within the dimensionality of the hyperplane (Fig. 1).

The kernel function plays a key role for SVMs in solving
real-world problems because many such applications are not
linearly separable in their original dimensional space (i.e. that
of the input). By applying a kernel transform K, the input data
vectors are mapped into a higher-dimensional space. In this
space, the mapped data vectors could be linearly separable or
have improved separability [4]. There are several popular ker-
nel transforms shown in Table 1. The Radial Basis Function
(RBF) kernel is commonly considered as the most powerful
but linear kernels are best understood and are the simplest
to apply [4]. By doing some parameter configuration, a RBF
kernel can be converted to a linear one [11]. The linear ker-
nel is suitable for solving linear separable problems. If target
classes are not linear separable, they have to be projected to
a higher dimension space where they are linear separable or
easier to be separated. This process is done using non-linear
kernels, such as the RBF kernel. Figure 2 depicts an exemplar
classification problem in 2D together with the application of

Fig. 2 Classification using linear kernel and RBF (radial basis func-
tion) kernel. Linear kernel and RBF kernel have different classification
performance

linear and RBF kernels. In this example, a linear kernel can-
not separate two classes without misclassification; a class 1
point is classified as class 2. In contrast, a RBF kernel sepa-
rates them correctly. The selection of a suitable kernel type
for a SVM classifier applied to a given problem will be dis-
cussed in Sect. 2.2.

2.2 Training support vector machines

A SVM classifier has to be initially trained before use for
classification. During training, samples of two classes are
presented using a training procedure. After analysing these
training data, the classifier finds the hyperplane which sep-
arates two classes with maximum margin in a given dimen-
sional space using a given kernel function, K. The aim of
training the SVM classifier is to find a suitable kernel, K and
its associated parameters. A commonly used parameter eval-
uation method is cross-validation [12]. This is a statistical
method of testing hypotheses that keeps a subset of data as
a test set and the remaining data as a training set. There are
several commonplace cross-validation methods with k-fold
cross-validation being the most popular [16]. This procedure
divides original data into k subsets and keeps one of them as
a test set while the remaining k − 1 subsets are used to train
the classifier. This process is repeated until every subset has
been used as test set and the mean correct rate is taken as the
single estimation of the classifier. Cross-validation helps to
eliminate the unilateral testing hypotheses suggested by the
data [16] (i.e. over-fitting), so that it can give a comprehensive
estimation of parameter configuration.

In order to utilize the cross-validation method to find the
best kernel, K and its parameters, a grid search method is
introduced [3,11]. The grid search method performs cross-
validation on training sets using all possible parameter con-
figurations within certain ranges. This method searches
parameter space based on a “try-all” method, i.e. search-
ing all the possible combinations and all ranges of differ-
ent parameters specified by user for each kind of kernel.
This way, the kernel and its parameter configuration with
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Fig. 3 NIH/3T3 fibroblasts. a NIH/3T3 fibroblasts culture stained with
Haematoxylin and taken with a 10× objective (3t3-H-10×). b NIH/3T3
fibroblast cultures stained with Haematoxylin and Eosin and taken with

a 20× objective (3t3-HE-10×). c NIH/3T3 fibroblast cultures stained
with Haematoxylin and taken with a 20× objective (3t3-H-20×)

best performance (normally highest detection rate on
training sets) is decided. In addition, the grid search method
can also prevent over-fitting by finding the model with the
best generalization [11].

We used the approach of Chang and Lin [3], to perform
the grid search by providing two parameters to optimize a
SVM classifier: the cost C and a kernel parameter γ [3,11].
The cost C is the penalty parameter on the error [2,4,21,24],
a bigger Cost meaning giving a heavier penalty on errors. γ is
a parameter used to configure kernels; for different kernel, γ

has different meanings. In the RBF kernel, exp(−||x−xi ||2
2σ 2 ),

γ is 1/2σ 2. A smaller γ will produce a more general classi-
fication boundary [4]. The optimal combination of these two
parameters is found after a grid search which only needs be
performed once for a given classification task.

3 Experiment

In this section, we explore the performance of SVM classifier
on detecting cell nuclei from the background over a range of
sample images.

3.1 Experimental material

The cells in the images were NIH/3T3 fibroblasts (a cell
line) cultures grown on glass and stained with Haematox-
ylin (this stains the nuclei in blue and the cytoplasms are
faintly stained also) or Haematoxylin and Eosin (blue and
pink staining, the eosin stains the cytoplasms in pink). The
images were taken with a QImaging Micropublisher 3.3 Fire-
wire camera (providing a 2,048 × 1,536 pixel field attached
to an Olympus BX50 microscope) with either a 10×objective
(1 pixel=1.239µm) or a 20×objective (1 pixel=0.624µm).
The images were background corrected and were the aver-
age of 8 image captures. We used both H and HE images.
This was to investigate whether the performance would be
affected by the use of deconvolution of two stains rather
than one (HE stain method is more commonly used than H
alone).

3.2 Training data

The data set consisted of 75 images. Among these, 25 images
contained NIH/3T3 fibroblast cultures stained with Haema-
toxylin only (Fig. 3a). These 25 images were taken with a
10× objective (3t3-H-10×). 25 images were stained with
Haematoxylin and Eosin (Fig. 3b) at 20× objective (3t3-
HE-20×). The remaining 25 images also contained NIH/3T3
fibroblasts cultures stained with Haematoxylin (Fig. 3c), but
they were taken with a 20× objective (3t3-H-20×). Three
3t3-H-10× fibroblasts cultures images were used to provide
training samples. Each training image itself contains around
1500 examples of cell nuclei to use as individual training/test-
ing examples.

A positive training set and a negative training set were cre-
ated to train a SVM classifier. The cell nuclei become dark-
ened after being stained. They are thus very easily manually
extracted as positive samples from the background manu-
ally. For our cell detection task the positive training data are
rectangular sub-images of part of individual 3t3 cells (the
boundary of the sub-image is a rectangle, as it is impossi-
ble to include all the irregular shaped physical limits of the
cytoplasms). So precisely speaking, our cell detection is a
cell nucleus detection task which includes both cytoplasm
and nucleus. Both positive and negative training samples in
these training sets come from the three 3t3-H-10× training
images. These samples were manually extracted from a sub-
set of the original images (examples are shown in Fig. 4).
Our rule of extracting positive samples was to include only
one cell nucleus per sub-image, and align the centroid of
each cell nucleus to the centre of the sub-image (e.g. Fig. 4).
The width and height of each cell nucleus were no less than
2/3 of the width and height of the sub-image. Negative sam-
ples were manually extracted from image areas containing
no cells (only background). Each sub-image may have dif-
ferent sizes according to the shape of its cell nucleus and
were unified to a uniform size for training. All the extracted
sub-images were cross-validated by four experience human
experts participating in this research (authors). These initial
training sets were further improved to form the final SVM
classifier training sets. This is discussed further in Sect. 3.3.
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3.3 Training the SVM classifier

An important issue with machine learning based detection
is the selection of the input features used for detection that
can distinguish targets (i.e. nuclei) from background. For
our experiment, we mainly tested three types of inputs for
a sub-image: raw pixel values, edge values, and the combi-
nation of these two. The edge value is calculated using the
Laplace operator [23]. Other feature information considered
were image moments, histograms [23] and their combination
with raw pixel values but there were no clear improvements
on the system performance compared with using only the raw
pixel values or edge values. For the training, raw pixel values
and Laplacian values were normalized to a range between 0
and 1. Their combination was simply the normalized sum
of the two values. The reason for using edge information
as an input component was that in a positive example the
cell nucleus edge forms a circle and the edge strength is
stronger than other parts of the image. In a negative exam-
ple the edges distribute randomly. In order to isolate which
input was the optimal choice, the grid search method was
used to identify the input with the highest classification per-
formance. In the grid search, we tested all available kernel
types and their parameter configuration over certain ranges.
The search range for Cost is from 0 to 10 with a step of 0.5.
For Gamma is from 0 to 0.1 with a step of 0.005. The combi-
nation of raw pixel value and Laplacian value inputs gave the
best performance with a RBF kernel selection. This combi-
nation improves the detection rate by at least 5% compared
with other input values during the input selection procedure.

After the initial training sets (introduced in Sect. 3.2) were
created, the next step was to train the SVM classifier. Dur-
ing the training, these sets would be improved continually by
adding more key training samples to cover false-positive or
false-negative instances. This improvement stops when the
performance of the classifier stabilizes. The optimal kernel
and its parameter configuration for the classifier could then be
determined. Table 2 details the overall procedure of training
the SVM classifier.

All input training samples were resized to a uniform image
size for training the classifier. In order to improve training,
detection speed and maintain high classification rate, 20×20
was empirically chosen as the uniform size. Figure 4 shows

Fig. 4 Samples of sub-images for training a SVM classifier. Left side
positive training samples. Right side negative training samples

some samples of the training sub-images. Cell nuclei of pos-
itive training samples are located in the centres of the sub-
images. Negative training samples are patches containing no
nucleus, part of nucleus or more than one nucleus. If the
centre of the nucleus is far away from the centre of the sub-
image, this sub-image will also be treated as a negative sam-
ple. Table 3 shows quantity and size details of training data
used in this work.

Figure 5 shows the grid search for kernels and their opti-
mized parameters in the final training iteration (of the proce-
dure in Table 2) where the highest classifier performance has
been reached. In this iteration, RBF kernel gives higher clas-
sification rate. It is taken for the SVM classifier. Alternative
kernels, sigmoid and polynomial, were also included in the
search but their performance was much lower than the RBF
and linear kernels. The final results are discussed in more
detail in Sect. 3.5.

3.4 Detecting cell nuclei

The trained SVM classifier was applied to detect cell nuclei
from the unseen culture cell images. When searching for cell
nuclei, a grid scan was performed across the image to extract
image patches and return them to the SVM classifier for
classification (thus returning both the classification result for
cell nuclei presence at that sub-region patch position within
the image). In order to cope up with nuclei of varying size,
the size of the grid increased over multiple scan iterations.

Table 2 Procedure to train a SVM classifier

1. Use grid search method to determine appropriate kernel and optimize kernel parameters on initial training sets

2. Use selected kernel and its optimized parameters to train classifier using the initial training sets

3. Use trained classifier to detect cells from original images where the training samples are from

4. Update training sets by adding false positive sample to negative training set and false negative samples to positive training set

5. Use grid search method to determine appropriate kernel and optimize kernel parameters on updated training sets

6. Repeat step 3, 4, 5, until the detection is stable on those training images
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Table 3 Training data details

Source images Number of sub-images Average sub-image size Uniform size

Positive Negative (width × height)

3t3-H-10× 269 376 37 × 38

3t3-HE-20× 232 311 32 × 34 20 × 20

3t3-H-20× 320 430 35 × 37

Only the 3t3-H-10× is chosen for the final experiment. Other sets are only used for comparison purpose and they did not contribute to the performance
of the classifier. (Training samples are resized to uniform size for training)

Fig. 5 Searching parameters
for RBF and Linear kernels
using grid search method.
a RBF kernel. The highest
classification rate is 99.1091%
when Cost is 1.5 and Gamma is
0.08. b Linear kernel. The
highest classification rate is
98.1069% when Cost is 2 and
Gamma is 0.08 using the RBF
kernel

Several iterations were performed based on defined start-
ing and stopping cell nuclei scale criteria. Extracted image
patches were rescaled to 20×20 pixels for SVM classifica-
tion. The grid scan used an exhaustive pixel sliding window
in the X and Y directions over the image defined by move-
ment in N pixel steps in each direction. Post processing was
performed to cluster neighbouring positive patches within a
certain area and filter out smaller nuclei patches occurring
inside large nuclei patches. Figure 6 illustrates the proce-
dures for post-processing the detected cell nuclei. An impor-
tant step is the tidy up of detections. To merge two overlap-
ping rectangles, we calculate the overlapping area between
them. If the overlapping area is bigger than 80% area of
one of the rectangle, we count these two rectangles as a sin-
gle detection and merge them together with a new rectangle
which is the smallest one comprising those two rectangles.
To remove a smaller rectangle within another one, we check
if all four corners of the small rectangle are within the big
rectangle. If they are, then this small rectangle will be dis-
carded.

The system outputs are the coordinates and sizes of
detected cell image patches. These outputs are post-processed
values based on the sub-region patches that obtain a positive
response from the SVM. They contain the cell nuclei. The
user can do further calculations to get more precise cell loca-
tions, for example the geometrical centre of the cell, within
these image patches by themselves.

Fig. 6 The procedure for post-processing detected cell nuclei. The sys-
tem finds cells with different sizes then consolidates them and forms
final outputs
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Fig. 7 Deconvolution
algorithm extracts the
Haematoxylin contribution from
input images stained with
Haematoxylin and Eosin. The
Haematoxylin component of the
image is shown on the top right

Table 4 Average detection
results over the range of
RBF-kernel SVM parameter
settings illustrated in Fig. 5

Images Detections False negatives False positives Repeated detections Accuracy (%)

3t3-H-10× 1410 41 3 66 92.24

3t3-HE-20× 432 13 2 22 91.15

3t3-H-20× 441 8 4 26 90.95

For the NIH/3T3 fibroblasts cultures stained with
Haematoxylin and Eosin, we first applied H/E colour decon-
volution [14,22] as a preprocessing step prior to the SVM
classification. This algorithm deconvolves the colour infor-
mation taken with RGB based cameras and splits the
contribution of each stains based on stain specific RGB
absorption [22]. In our experiment, we split the Haematoxy-
lin contribution from input images stained with Haematoxy-
lin and Eosin. This makes the input image colour information
consistent with the training sub-images and removes other
staining contribution to the input image which may influ-
ence the overall performance of the classifier. An example of
this process is shown in Fig. 7.

3.5 Results

In the experiment, three 3t3-H-10× fibroblasts cultures
images were used to provide training data and 72 images,
made up of 22 3t3-H-10×, 25 3t3-H-20×, and 25 3t3-HE-
20× fibroblasts cultures were then used to test the classifier
detection performance. The results showed highly success-
ful performance of the SVM classifier. In the experiment, we
validated the classifier performance based on our own man-
ual detection of cell nuclei. On these 2,048 × 1,536 images,
the system achieved an average speed of 2 min/frame. The
computer we used is a 2.66 GHz Core 2 Duo laptop with
3.45 GB of RAM.

During searching, we used different search parameters
for 10× and 20× images, but constant parameters within
each group. For the 10× images, the searching grid size

started from 1.3×(training sample size) to 2×(training sam-
ple size). The increase step between scans at different scales
was 0.3×(training sample size). For the 20× images, the
searching grid size started from 2×(training sample size)
to 3.5×(training sample size). The increase step between
scans at different scales was 0.5×(training sample size). The
detection intervals for both 10× and 20× images were 3 pix-
els on both X and Y directions. The average detection rate
was above 90%. There were two 3t3-HE-20× images and
two 3t3-H-10× images which were not well detected (80%
detection). Adjusting the search parameters, the detection
improved this to between 85 and 90%. If we continue tun-
ing these parameters, the results would be further improved.
The false positive detections were quite low. On average,
it was less than 5 false positive detections in each image
(∼ 0.9% false positive per image based on ∼ 441 cells per
3t3-H-20 image). The set of average detection results over
72 test images is shown in Table 4. This table shows the aver-
age detections, false negatives, false positives and repeated
detections within each image type (rounded to nearest inte-
ger). The results are classified according to image types.

Figures 8, 9 and 10 show samples of nuclei detection
in 3t3-H-10×, 3t3-H-20×, and 3t3-HE-20× fibroblasts cul-
tures images where we see the detection of nuclei over vary-
ing densities, scales, staining and types.

By means of comparison, we compared this result to the
earlier machine learning based approach of [7] based on train-
ing over the same datasets as used in the work presented
here and employing the methodology of [7] for solely cell
nuclei detection. The resulting detection rate of the cascaded
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Fig. 8 Detection of 3t3-H-10× cell nuclei

Fig. 9 Detection of 3t3-H-20× cell nuclei

Fig. 10 Detection of 3t3-HE-20× cell nuclei

haar classifier approach of [7] is 82% which is considerably
lower than that presented here using our novel Laplace-fea-
ture derived SVM methodology.

4 Discussion

The SVM classifier was able to successfully detect most
of the individual 3t3 cell nuclei (∼ 90% success, Table 4).
There were few false positive detections (≤0.9%, Table 4).
Overall, the SVM algorithm displayed remarkable perfor-
mance of generalization: we used only 1/25th of the avail-
able images and not all of the cell nuclei in these images
as training data. We used only 3t3-H-10× images to train
the classifier but it could detect 3t3-H-20× and 3t3-HE-
20× nuclei well. Notably, the classifiers could discriminate
individual nuclei even when they formed clusters or there
were overlapping (see, Fig. 11a). In [7], we applied Haar
like feature classifier to detect cyst using raw pixel values.
Though it has comparable performance with other work [14],
this classifier gave a higher false positive rate and missed
some true positives (false negatives) when faced with
complex cell clusters in comparison to the SVM approach
proposed here. The performance of the SVM and the selec-
tion of input features reduced overall false detections (both
positive and negative). In addition, using colour deconvo-
lution to extract the Haematoxylin channel information did
not seem to influence the nucleus detection performance in
comparison to images of Haematoxylin-only stained cul-
tures.

We noted that there were some repeated detection over
some single cell nuclei. It is difficult for the classifier to detect
nuclei successfully when the nucleus size is much larger than
the class norm. This increased the repeated detection of an
individual nucleus. These kind of false detections can be
removed by providing a larger detection grid size range at the
expense of and increased computational cost (Fig. 11b–d).

In addition to the kernel type and its parameters, the image
search parameters also had significant influence on nucleus
detection. These search parameters included the starting
detection grid size, the grid size increasing factor
and detection intervals. Currently, we have no formal method
to selecting these parameters and chose them according to an
empirically estimated minimum cell nucleus size. Figure 12
shows the influence of different search parameters. More
cells with smaller size were detected using the 1.3 times grid
size while a 1.4 times grid missed small cells. The differ-
ences have been marked using yellow lines. Circles 1, 2, and
4 show some cells detected with the 1.3 scale (45 cells are
detected) but not the 1.4 scale (18 cells are detected) start-
ing detection grid size.Circle 3 shows the different repeated
detections. It is obvious the 1.3 starting detection search grid
size gave better detection. Another interesting phenomenon
was that the 1.3 times size gave less repeated detections than
1.4. This is probably related to the detection clustering algo-
rithm, as it is more likely for a nucleus to be identified as
being inside another and to be removed at the lower scale
setting.
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Fig. 11 a The classifiers could
discriminate individual nuclei
even when they formed tight
clusters or there were overlaps.
b A sample of repeated
detections. c An undetected
nucleus due to its large size.
d A repeated cell nucleus due to
its large size

Fig. 12 Different starting
detection grid sizes influence the
cell detection. a A detection
sample with starting detection
grid size 1.3 times the training
sample size. b is with 1.4 times
the training sample size

5 Conclusions and future work

With the help of the grid search SVM training method, we
can generate suitable, high performance classifiers, as the
selection of classifier parameters has an important and clear
influence on the system performance [11,16]. Input feature
selection is crucial and here we combine both gradient edge
and raw pixel values to provide a successful technique. Our
approach shows a 90% average success rate based on an un-
preprocessed raw image and generalizes over differences in
scale and cell staining (with deconvolution used as appropri-
ate). This supports the high performance of machine learning
approaches [5,7,18] in this and other medical tissue clas-
sification problems. Notably the methodology outperforms
earlier work in this field [7].

We are extending the current work to more complex cell
images. Our current experiments used relatively regular
images with small variation in cell shape and orientation. If
the variation is large, the construction of training sets and the
selection of features for detection is likely to be affected. Cur-
rent training data is governed by the rectangular separation

of cells from the original slide images. As such it is inevitable
that the training samples include parts of other neighbouring
cells which are likely to influence the training and possibly
produce further false positive detections. In future, we will
consider to use sub-parts of the nuclei as input features to
locate possible cell nuclei with further verification to detect
whole cell nuclei presence. A smarter search method will
also be used though the speed now is acceptable. Currently,
we are using a sliding window to search through the image
for nuclei. Quick edge detection or threshold method may
provide initial areas for search.
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