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Abstract

Deep neural networks have demonstrated great generaliza-
tion capabilities for tasks whose training and test sets are
drawn from the same distribution. Nevertheless, out-of-
distribution (OOD) detection remains a challenging task
that has received significant attention in recent years.
Specifically, OOD detection refers to the detection of in-
stances that do not belong to the training distribution, while
still having good performance on the in-distribution task
(e.g., classification or object detection). Recent work has
focused on generating synthetic outliers and using them
to train an outlier detector, generally achieving improved
OOD detection than traditional OOD methods. In this re-
gard, outliers can be generated either in feature or pixel
space. Feature space driven methods have shown strong
performance on both the classification and object detection
tasks, at the expense that the visualization of training out-
liers remains unknown, making further analysis on OOD
failure modes challenging. On the other hand, pixel space
outlier generation techniques enabled by diffusion models
have been used for image classification using, providing
improved OOD detection performance and outlier visual-
ization, although their adaption to the object detection task
is as yet unexplored. We therefore introduce Dream-Box, a
method that provides a link to object-wise outlier genera-
tion in the pixel space for OOD detection. Specifically, we
use diffusion models to generate object-wise outliers that
are used to train an object detector for an in-distribution
task and OOD detection. Our method achieves compara-
ble performance to previous traditional methods while be-
ing the first technique to provide concrete visualization of
generated OOD objects.

1. Introduction

Out-of-distribution (OOD) detection has emerged as a crit-
ical challenge in the deployment of deep neural networks,
particularly in tasks such as classification [4, 11, 21, 28] and
object detection [22, 27, 30] in addition to having broader
impact potential for practical outlier detection across a
range of application tasks [1, 8–10, 14]. While these models
exhibit remarkable generalization capabilities within their

training distribution, their ability to identify and handle data
that deviates from this distribution remains a significant lim-
itation. OOD detection aims to address this issue by dis-
tinguishing between in-distribution and out-of-distribution
instances, ensuring robust performance in real-world sce-
narios where the input data may not conform to the training
set [29].

Traditional approaches for OOD detection include us-
ing simple softmax probabilities [12] or the Mahalanobis
distance [16] to leverage the statistical properties of fea-
ture distributions, identifying OOD instances by measur-
ing the distance of a given sample from the inlier distri-
bution in the feature space. Another approach consists of
using Gram matrices [24] to capture the correlations be-
tween feature maps, providing a robust representation to
discriminate between in-distribution and OOD data. A re-
cent approach that has shown great performance for OOD
detection is to use the energy score [20], i.e., the log-sum-
exp operation over the class logits, framing OOD detec-
tion as a density estimation problem by assigning lower en-
ergy scores to in-distribution samples and higher scores to
outliers. Whilst these methods have shown promising re-
sults, they often lack the ability to leverage training outliers
(e.g., synthetically generated outlier instances). This limi-
tation has spurred the development of outlier generation ap-
proaches, which not only improve detection performance
but in some cases offer the added benefit of interpretable
outlier visualization [5, 6].

In terms of outlier synthesis, other works have fo-
cused on creating synthetic outliers for training an in-
distribution/OOD binary classifier. Among these ap-
proaches, feature space outlier generation methods, such as
Virtual Outlier Synthesis (VOS) [5] and Feature Flow Syn-
thesis (FFS) [15], have demonstrated strong performance in
both classification and object detection tasks. These tech-
niques generate synthetic outliers in the feature space, en-
abling the training of outlier classifiers that enhance OOD
detection capabilities. However, a notable limitation of
these methods is the lack of interpretability and visualiza-
tion of the generated outliers, which hinders a deeper un-
derstanding of their failure modes and limits further analy-
sis towards improved performance. On the other hand, pixel
space outlier generation techniques have shown promise in
image classification tasks. For instance, Dream-OOD [6]
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Figure 1. Dream-Box enables object-wise OOD detection by generating objects using embeddings far from the class-name text embeddings.

leverages diffusion models to generate synthetic outlier im-
ages directly in pixel space. This technique provides mean-
ingful visualizations of the generated outliers, offering in-
sights into their characteristics, while improving OOD de-
tection. Despite these advancements, the application of
pixel space outlier generation to object-wise OOD detection
remains largely unexplored.

This work aims to close this gap by introducing a novel
approach leveraging diffusion models for object-wise pixel
space outlier generation in the context of object detection.
Our method generates object-wise outliers (Fig. 1), which
are then used to train an object detector capable of per-
forming both in-distribution tasks and OOD detection. Our
method, dubbed Dream-Box, achieves OOD detection per-
formance comparable to state-of-the-art traditional meth-
ods while providing interpretable visualizations of OOD ob-
jects. This work builds on the foundations laid by Dream-
OOD [6], which explores the use of generative models for
OOD detection, but further extends its applicability to ob-
ject detection tasks. Our contributions not only advance the
state-of-the-art in OOD detection but also open new avenues
for research in outlier visualization and analysis, encourag-
ing for more robust and interpretable deep learning systems.
Reference software code is available at:
https://github.com/KostadinovShalon/dream-box

2. Related Work
Several works investigate OOD detection using different ap-
proaches. For instance, some works rely on estimating the
probability density of the training data and flagging low-
density regions as OOD. For instance Lee et al. [16] pro-
posed using the Mahalanobis distance in the feature space
of deep neural networks, achieving strong performance in
OOD detection tasks. Nonetheless, Mahalanobis distance
may not generalize well for complex distributions, such as

for object detection. Other methods, such as ODIN [17] and
Gram matrices [24], modify pre-trained models to improve
OOD detection without retraining. While computationally
efficient, these methods often rely on heuristics and may not
generalize across diverse datasets.

A recent approach that has shown promising results uses
the free energy score for OOD detection [20]. Energy-based
models treat OOD detection as a density estimation prob-
lem by assigning lower energy scores to in-distribution sam-
ples and higher scores to outliers, leveraging the logits of a
pre-trained classifier to detect OOD samples, demonstrating
high performance on benchmark datasets. Other works have
used the energy method while using synthetically generated
outliers. For instance, Virtual Outlier Synthesis (VOS) [5]
generates outliers in the feature space by learning Gaus-
sian distributions over the feature representation of different
classes and sampling from low-probablity regions. Simi-
larly, Feature Flow Synthesis (FFS) [15] learns a reversible
transformation from the feature space to a class-agnostic
normalized space, where outliers are generated, demonstrat-
ing improvement over VOS.

Additionally, Isaac-Medina et al. [14] extended the VOS
and FFS frameworks introducing OLN-SSOS for class-
agnostic open-world OOD detection in object detection. In
this context, these methods are the first methods to show
a significant performance for the object detection task, but
often lack interpretability and visualization capabilities.

On the other hand, Dream-OOD [6] uses diffusion mod-
els to generate full-image synthetic outliers in the pixel
space, offering improved OOD detection performance and
interpretable visualizations, enhancing the robustness of
OOD detectors. Nonetheless, its application to object de-
tection via object-wise outlier generation remains an area of
investigation and hence forms the focus of the OOD study
presented here in this paper.

https://github.com/KostadinovShalon/dream-box


Generic Prompts

Modified Prompt Embeddings

"A transparent object that appears
to be both solid and liquid at the
same time, emitting soft light."

In-distribution dataset
Masked
Stable

Diffusion

Masked
Stable

Diffusion

OOD dataset

OOD dataset
Object

Detector

Figure 2. Dream-Box overview. We generate outlier objects using two prompt strategies and leveraging in-distribution objects. Subse-
quently, we train an object detector with a classification output head for in-distribution/OOD.

3. Dream-Box
In general, object-wise OOD refers to detecting objects in
an image and labeling them as either an in-distribution class
or an OOD instance, in a semi-supevised mannner, without
having any ground-truth (true) OOD samples available dur-
ing training. Therefore, we introduce Dream-Box, a frame-
work for object bounding-box based OOD that leverages
diffusion models for object-wise outlier generation in the
pixel space. We develop our strategy for outlier synthesis in
Sec. 3.1, while we outline our OOD detection technique in
Sec. 3.2. Finally, the implementation details are discussed
in Sec. 3.3.

3.1. Outlier Generation Strategy
Motivated by Dream-OOD [6], Dream-Box uses Stable Dif-
fusion [23] to generate object-wise outliers in the pixel
space, enabling object-aware OOD detection. An overview
of Dream-Box is presented in Fig. 2.

Our method consists in augmenting the training dataset
by replacing in-distibution objects with synthetic outliers
that are labeled as OOD. Specifically, we consider an im-
age x drawn from the in-distribution x ∼ Din and consider
its ground truth bounding boxes B = {bk}Mk=1, where M
is the number of ground truth bounding boxes in the im-
age, and each bounding box consists of a class label ck and
four position values, i.e., the top-left coordinates (xk, yk)
and the width and height (wk, hk). An image x̃ with OOD
objects is generated by inpainting an object for each bk ∈ B
using a masked generator model f that generates an object
given a mask mk and a prompt ρ(ck) in function of the class
label, such that x̃(bk) = f(x, ρ(ck),mk). In this sense, we
take the mask as the region described by the bounding box.
If we consider all objects within the input image, then the
generated OOD image consists of generating one object at
a time in a sequential manner:

x̃i = f(x̃i−1, ρ(ci),mi) . (1)

Dream-Box samples N images from Din and uses the

process from Eq. (1) to generate an OOD dataset Dood

which will enable object-wise OOD detection (Sec. 3.2).

We consider two prompting strategies to use with
Eq. (1), namely generic textual prompts and distance-based
modified prompts, described as follows:
Generic textual prompts: Since the goal is to perform
OOD detection while still having a good performance in the
in-distribution task (object detection), we propose a simple
sampling mechanism that create objects similar to the in-
distribution dataset but with features that make them OOD.
Therefore, we use generic prompts taking the class name
and describing unrealistic and/or impossible characteristics.
We choose 20 different prompts, given in Tab. 1, where {}
indicates the class name. The motivation of this strategy
is that we can learn to recognize objects that do not look
like the normal as in the in-distribution dataset but can be
still detected as objects since they might look like the in-
distribution data.
Distance-based modified prompts: Following Dream-
OOD, this strategy aims to perturb the text embedding of
the class name in a region relatively far from the embed-
ding. Therefore, given a class name ck, we first obtain its
text embedding ζ(c) = CLIP(c) and perturb it using ran-
dom noise, such that the prompt embedding becomes:

ρ(c) = ζ(c) + σϵ , (2)

where ϵ ∼ N (0, I) and σ is the standard deviation. The
aim of this strategy is to create near-anomalies that, while
similar to the in-distribution, serve as cues as what means
to be a normal object instance. Compared with the generic
textual prompts strategy, this method does not require an
explicit description of what an OOD object should look like,
then avoiding to introduce any bias in the object detector.

3.2. Out-of-distribution Detection
The Dream-Box framework enables an augmented dataset
D = Din ∪Dood with images containing in-distribution and



No. Prompt
1 A {} that defies the laws of physics, floating in mid-air with strange edges.
2 A mechanical {} with organic, plant-like growths intertwining through its structure.
3 A transparent {} that appears to be both solid and liquid at the same time, emitting soft light.
4 A {} that changes its shape continuously, with shifting low contrast colors and textures.
5 A futuristic {} that blends digital and physical elements, glowing with an otherworldly light.
6 A {} with an impossible texture, smooth like liquid but solid like metal, floating in space.
7 A {} that merges two unrelated materials, seamlessly integrating them in an abstract form.
8 A floating {} with intricate geometric patterns constantly changing on its surface.
9 A {} made of plastic that constantly reconfigures itself into different shapes.

10 A {} that appears to be in multiple states at once, existing in two places simultaneously.
11 A strange {} that casts light in ugly but usual colors, transforming its appearance as it moves.
12 A {} that is both solid and ethereal, with strange veins of energy running through it.
13 A {} suspended in time, frozen in mid-motion, with particles of light trailing behind it.
14 A mysterious floating {} with a strange core, surrounded by shifting shadows.
15 A {} made of multiple contrasting materials that somehow coexist harmoniously.
16 A complex {} with multiple layers, each one having a different texture and ugly color that shifts over time.
17 A {} that seems to have multiple dimensions, existing in more than one space at once.
18 A {} with a constantly rotating surface, covered in strange markings and symbols.
19 A {} that looks like it’s part of the natural world, but is made entirely of artificial materials.
20 A smooth {} that seems to be melting and reforming simultaneously, surrounded by mist.

Table 1. List of Prompts for the Generic Prompts strategy. {} indicates the name of a class.

OOD objects. Therefore, any standard object detector can
be used for the in-distribution object recognition. With re-
gards to the OOD object detection task, a naive approach of
simply learning OOD objects as belonging to an additional
class, we aim to detect unseen objects as predict them as
OOD. Therefore, a supervised approach as such might not
generalize to unseen instances since they might look quite
different form the generated OOD instances. In this sense,
energy-based methods have shown to have a good perfor-
mance for OOD in object detection [5, 14, 15]. Specifi-
cally, the energy score of an object feature representation v
is given by:

E(v) = − log

K∑
i=1

exp(gk(v)) , (3)

where K is the number of classes and gk(x) is the logit
of the k-th class. Then, this energy is passed to a
small multi-layer perceptron ϕ(E) that is trained for in-
distribution/OOD classification using binary cross entropy,
such that we add the extra loss term to the object detector:

Lood = Evin∼Din

[
− log

eϕ(E(vin))

1 + eϕ(E(vin))

]
+

Evood∼Dood

[
− log

1

1 + eϕ(E(vood ))

]
.

(4)

The outline of this approach is shown in Fig. 3.
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Figure 3. Object detector with modified OOD output (head).

For this work, we use Faster R-CNN [22] with a
ResNet50 [11] backbone. Following previous works in
energy-based OOD detection [5, 6, 14, 15, 20], the feature
representation of an object v comes from the penultimate
layer of the object classification head. Additionally, since
the generated outliers are still intended to be detected as ob-
jects, the Region Proposal (sub-)Network within the Faster
RCNN architectire is trained with these instances as objects
(therefore, increasing their objectness score). Nevertheless,
to avoid a negative impact on the in-distribution task, the
classification and bounding box heads are not trained for
OOD instances.



Method FPR95 (%) AUROC (%) mAP (ID) (%)
MSP [12] 70.99 83.45 48.7
ODIN [17] 59.82 82.20 48.7
Mahalanobis [16] 96.46 59.25 48.7
Energy score [20] 56.89 83.69 48.7
Gram matrices [24] 62.75 79.88 48.7
Generalized ODIN [13] 59.57 83.12 48.1
VOS [5] 47.77 89.00 51.5
FFS [15] 44.15 89.71 51.8
Generic Prompts (Ours) 59.37 80.43 48.2
Distance-based modified embeddings (Ours) 65.03 79.27 49.5

Table 2. Performance comparison of Dream-Box to current OOD techniques for object detection.

3.3. Evaluation and Implementation details

Diffusion model. We use Stable Diffusion fine-tuned
for image inpainting. Specifically, the Stable Diffusion
v2 model [23] is fine-tuned for 200k epochs using the
LaMa strategy for masked generation [25]. Regarding the
distance-based modified prompt strategy, choosing a stan-
dard deviation value in Eq. (2) would require us to know the
how far the OOD objects are, which is not known a priori.
Therefore, we try different standard deviation values, such
that σ ∈ {0.01, 0.1, 1.0, 2.5, 5.0}. We sample N = 5, 000
images with repetition for each experiment. Finally, since
we observed that Stable Diffusion v2 might erase objects
when the mask area is too small, we only synthesize new
objects whose bounding boxes have an area A > 2, 000
pixels.
Object Detection. We use MMDetection [2] for training
Faster RCNN [22] with a ResNet50 [11] backbone pre-
trained on the ImageNet [3]. All of our models are trained
using Stochastic Gradient Descent for 18 epochs (follow-
ing Du et al. [5]), with a batch size of 16, weight decay of
1 × 10−5 and initial learning rate of 0.02 that is decreased
by a factor of 0.1 after 12 and 16 epochs. The OOD clas-
sifier is trained using Focal Loss [19] with a loss weight of
10.0. Each model is trained using a single NVIDIA A100
GPU.
Datasets. We use the PASCAL VOC 2007/12 dataset [7],
comprising 20 object classes, as the in-distribution dataset.
The OOD dataset consists of the testing partition of the MS-
COCO dataset [18], removing all images that contain any
of the 20 in-distribution classes, with the final OOD testing
dataset consisting of 930 images.
Evaluation Metrics We report the area under the receiver
operating characteristic (AUROC) curve for OOD detecte-
tion, and the false positive rate at 95% confidence (FPR95)
of in-distribution detection, i.e., the rate of OOD instances
labeled as in-distribution given an OOD score threshold
such that 95% of in-distribution instances are correctly clas-
sified. Additionally, we report average precision (AP) in the

Figure 4. Performance of the distance-based modified prompting
strategy with different σ values.

in-distribution object detection task to evaluate the effect of
Dream-Box in the main task.

4. Results

Tab. 2 shows the results of our method compared to other
standard OOD approaches in object detection. The results
shown for the distance-based modified prompt embeddings,
corresponding to σ = 2.5, achieved the best performance.
Although our method has a lower performance compared
with the state-of-the-art methods (VOS and FFS), it still
achieves comparable performance with respect to other tra-
ditional approaches, indicating that the generated outliers
are providing cues into what are in-distribution samples or
not. A key principle in VOS and FFS is that the outliers are
generated from the feature representation, therefore learn-
ing a compact representation of the feature space and clas-
sifying other instances as OOD. This indicates that the fea-
ture representation of the objects in Faster RCNN has strong
signals of whether an object is part of the distribution or



Figure 5. Exemplar generated outlier objects of the generic prompt and distance-based modified prompting strategies.

not. However, our method provides a sense of explainabil-
ity by enabling visualization of outliers in the pixel space.
Fig. 5 shows the generated outliers for both strategies. The
improved performance of the generic prompts is directly re-
lated to the outliers being closer to the actual object distri-
bution than the distance-based modified prompt embeddings
approach. For instance, the dog in the third row completely
disappears, indicating that the σ value used to generate the
embeddings is far from the class embedding. Therefore, the
generated images from the generic prompts approach indi-

cate that showing images near the in-distribution data but
with OOD features helps in OOD detection for object de-
tection.

Ablation studies corresponding to different values of σ in
the distance-based modified prompt strategy are presented
at Fig. 4, where it is observed that the best performance is
achieved at σ = 2.5. The ablations also show that using too
small or too large values is detrimental to Dream-Box per-
formance. For small σ values, the generated outliers might
look quite similar to the original in-distribution data, which



Figure 6. Outlier objecr generation comparison by varying σ in the distance-based modified prompting strategy.

is opposite to the goal of generating synthetic outliers. On
the other hand, too large values of σ create very dissimi-
lar objects that might be too far from the object distribution
(i.e., they do not look like objects anymore).

This is further supported by Fig. 6, where we show dif-
ferent outliers by varying σ values. For instance, most of
the objects with σ ≤ 1.0 are similar to what in-distribution
objects look like, whereas for σ = 5.0 the images break
and no longer show identifiable objects. On the other hand,
while objects generated with σ = 2.5 can still be identified
as an object with some resemblance to the original class,

they present anomalous features that make them ideal can-
didates for OOD training. Nonetheless, it is also observed
that objects might look still like the original class in some
instances (such as the bus in the last row), or completely
unrecognizable (e.g., the bottle in the second row). This
indicates that identifying the proper distance to the class-
embedding centre for outlier synthesis might be critical for
proper class-aware OOD object synthesis.

Recent works [6, 26] have shown other strategies for
OOD sampling without relying to explicit distances from
the class name embedding, but their application to object-



wise ODD are as yet un-investigated. Therefore, the study
of improved outlier sampling strategies for object-wise
OOD remains an area for future work.

5. Conclusion

This work introduces Dream-Box, a novel framework for
outlier object generation in the pixel space for object-wise
out-of-distribution (OOD) detection. By leveraging diffu-
sion models, our method synthesizes pixel-space outliers,
addressing the lack of interpretability which is the key limi-
tation of alternative feature-space approaches. Unlike prior
methods such as VOS [5] and FFS [15], which rely on ab-
stract feature representations, Dream-Box provides a more
intuitive and explainable means of generating synthetic out-
liers, thereby enhancing the explainability of OOD detec-
tion models.

Experimental evaluations demonstrate that Dream-Box
achieves competitive OOD detection performance with tra-
ditional OOD approaches, despite not surpassing state-of-
the-art feature-space methods. Notably, the generic prompt
strategy yields improved OOD classification results com-
pared to distance-based modified prompt embeddings, sug-
gesting that generating outliers closer to the decision bound-
ary contributes positively to detection accuracy. The abil-
ity to visualize synthetic outliers offers additional insights
into the failure modes of object detection models, an aspect
previously unexplored in pixel-space OOD generation for
this task. Further analysis shows that while the distance-
based modified prompt strategy for outlier generation un-
derperforms the generic prompt strategy, it provides a tun-
able parameter for controlling the objects anomalous ap-
pearance. Additionally, the use of improved sampling meth-
ods in the class embedding space may improve such a strat-
egy, although its application to object detection remains un-
explored.

These findings underscore the potential of pixel-space
outlier generation for interpretable OOD detection in ob-
ject detection. Future research directions include refining
the generation process to better balance in-distribution per-
formance with OOD separability, extending Dream-Box to
additional vision tasks, and exploring more adaptive prompt
engineering techniques to improve the quality of synthe-
sized outliers, including the exploration of the text embed-
ding space for OOD prompt embeddings, akin Dream-OOD
[6].
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