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Abstract. We present a real-time approach for traversable surface de-
tection using a low-cost monocular camera mounted on an autonomous
vehicle. The proposed methodology extracts colour and texture informa-
tion from various channels of the HSL, YCbCr and LAB colourspaces
by temporal analysis in order to create a �traversability map�. On this
map lighting and water artifacts are eliminated including shadows, re�ec-
tions and water prints. Additionally, camera vibration is compensated by
temporal �ltering leading to robust path edge detection in blurry images.
The performance of this approach is extensively evaluated over varying
terrain and environmental conditions and the e�ect of colourspace fusion
on the system's precision is analysed. The results show a mean accuracy
of 97% over this comprehensive test set.

1 Introduction

This work addresses the problem of autonomous vehicle navigation in semi-
structured or unstructured environments where geometrical road models are not
applicable. Speci�cally, a real-time approach is presented which facilitates the
detection of traversable surfaces via temporal analysis of multiple image proper-
ties. These properties are speci�cally selected to provide maximally descriptive
image information with a minimal computational overhead per image frame. Ini-
tially, a multi-stage approach is proposed for feature extraction based on colour
and texture analysis. This information is then stored in a temporal memory
structure to improve algorithm robustness by means of noise �ltering. The pro-
posed methodology has been implemented on the SATURN unmanned ground
vehicle as part of the MoD Grand Challenge competition (2008).

Engineering road and obstacle detection systems has long been at the centre
of academic and industrial research, leading to a number of successful imple-
mentations, ranging from the early road-following systems [4, 16] to the most
recent fully automated vehicles in the DARPA Urban Challenge competition
(2007) [1, 5, 14]. Additionally, signi�cant research has been motivated by various
vehicle platforms for Mars exploration missions [7, 8]. However, the sensing and
processing complexity of these systems has often led to costly solutions which
whilst useful for exploiting the current limits of technology, do not address the



demand for low-cost autonomous platforms utilising widely available low-cost
sensors. Creating such vision systems is not a new concept [3, 11]. Embedded
lane-departure warning systems [9, 10], are increasingly becoming commonplace
in commercial vehicles, motivated by the demand for improved driver safety.
However, not every driving environment is as structured as a conventional road-
way and an autonomous vehicle may also be required to traverse unstructured
environments under varying conditions.

Fig. 1. Traversable area detection methodology

Several prior approaches focus on obstacle detection and avoidance by analysing
basic image properties such as texture, colour, hue and saturation of the monoc-
ular image. Such approaches are often built on the assumption that the area
directly in front of the vehicle is always traversable (initial state assumption)
and use a �safe� window to derive the properties of that surface [13]. Obstacles
and non-traversable areas are normally identi�ed through a probabilistic model
which is based on the similarity of each image pixel to the �safe window� [2, 13,
7]. This becomes the initial a priori model from which the system is driven as
demonstrated by the Pebbles III robot [13]. The advantages of this approach
include �exibility to changing conditions/terrains, limited training requirements
and real-time performance. On the other hand, a major disadvantage is its in-
ability to distinguish between surfaces with similar properties due to noise, il-



lumination and environmental e�ects. To solve this problem Kröse et al. [12]
proposed the use of optical �ow-based techniques, however this is often sensitive
to camera vibration and incurs additional computational cost. The work of [12]
does however introduce the important aspect of temporal analysis (via frame-
to-frame optical �ow) as a driver to overcome the earlier limitations of [16, 13].
By contrast, this paper proposes a real-time solution as inspired by the Navlab
�Road Following� module [16] and Pebbles III robot [13], with some fundamen-
tal changes in the image feature selection from multiple colourspaces and the
addition of a novel temporal memory model.

2 Feature extraction for traversable area detection

The following methodology aims to extract information from the video stream
output of a vehicle-mounted camera in order to create a map of the traversable
and non-traversable areas in real-time. The main challenge is the creation of an
algorithm that is adaptable to variable environmental conditions while utilising
the least possible computational resource that would facilitate execution on a
low-cost processing unit. Figure 2 provides some examples of such challenging
conditions that were experienced during the MoD Grand Challenge competi-
tion. The proposed approach is divided into four incremental stages: a) camera
image pre-processing, b) multi-dimensional segmentation by histogram analysis,
c) temporal information processing, d) traversable area mapping. As illustrated
in the overview diagram of Figure 1, the �rst stage deals with colour and tex-
ture extraction by using intensity-invariant channels of di�ering colourspaces.
The resolution of each input channel is then pyramidically reduced in order to
improve system performance and reduce noise (Figure 1 centre). Finally, the
lower-resolution images are segmented and �ltered using a temporal memory
model that produces the �traversability� map (Figure 1 lower).

Fig. 2. Examples of challenging environmental conditions with shadows, re�ections
from standing water and wet prints

2.1 Camera Image Pre-processing

First we describe the noise-�ltering approach that is applied prior to segmenta-
tion in order to eliminate shadows, re�ections and water prints. This is achieved



by combining individual channels from di�ering colourspaces to extract colour
and texture information that is insensitive to illumination changes. Prior re-
search [17, 6, 15, 13] has shown that choosing the right colourspace is crucial for
extracting accurate path and obstacle features. In fact this methodology com-
bines the HSL, YCbCr and LAB colourspaces [15] to derive four illumination
invariant features as listed below:

� Saturation (based on the S channel of the HSL colourspace)
By converting the RGB colourspace to HSL, the saturation channel is ex-
tracted (as illustrated in Figure 3) and further resized to a coarse 64 × 48
saturation intensity map by Gaussian pyramid decomposition of the 320×240
input image.

� Saturation-based texture

This can be derived by applying an edge detector on the S channel of the
HSL colourspace (Figure 3). Then the texture is de�ned as the density of
edges in di�erent parts of the image. Practically, this is achieved by Gaussian
pyramid decomposition of the output of the Sobel edge detector in order to
generate a low-resolution 64× 48 grid.

� Mean Chroma (based on combining the Cb and Cr components of the
YCbCr colourspace with the A component of the LAB colourspace)
Chroma provides luminance-independent colour information in the YCbCr
colourspace. As with the S channel of the HSL colourspace, dark shadows
and re�ections alter the chroma level making their detection di�cult. To
solve this problem Wu et al. [17] propose the combination of the two chroma
components (Cb and Cr) in order to detect features that are entirely light
intensity invariant. However, the Cb and Cr components have a relatively
small variation range when compared to the Y component. Based on this
observation, the Cb and Cr values are scaled to �t the 0− 255 (8-bit) range
and subsequently their mean value is derived. The A channel of the LAB
colourspace also provides intensity invariant information, thus by combining
it with the mean value of Cb and Cr, a map of colour distribution (Figure
4a) is created as described by equation 1.

chroma map =
sCb + sCr + 2sA

4
(1)

where sCb is the Cb channel of the YCbCr colourspace, sCr is the Cr channel
of the YCbCr colourspace and is the A channel of the LAB colourspace.
These three parameters have been scaled to 8-bit (0− 255 range).
An example of a mean chroma map is illustrated in Figure 4a, where most
re�ections have successfully been eliminated. This map is also pyramidically
reduced to a coarse 64× 48 grid.

� Chroma-based texture (based on the Cb and Cr components of the
YCbCr colourspace)
This is derived by calculating the mean value of the Cb and Cr components
to generate a new chroma map. The Sobel edge detector is subsequently
applied to this map in order to calculate a chroma-based texture density



Fig. 3. Image analysis into four input channels: saturation, saturation-based texture,
mean chroma and chroma-based texture

using the process described in the saturation-based texture above (Figure
3).

At this point we have four 64×48 arrays (8-bit) representing a set of characteristic
image properties. These arrays form the input of the segmentation algorithm as
described in the following section.

2.2 Segmentation by Histogram Analysis

Several prior path-following techniques have been developed around the assump-
tion that the area immediately in front of the vehicle is initially traversable and
thus they identify the pathway by comparison to �safe� window near the bottom
of the image [13, 2]. The current approach also adopts this idea since the �safe�
window can always be validated by low-cost active short-range sensors such as
ultrasonic or infrared. A histogram is calculated for each of the four input im-
age arrays (from the pre-processing stage) within the safe area. The histogram
resolution is then reduced by a factor of 8 in order to simplify its processing and
improve performance. Thus four di�erent histograms are derived, from which
the dominant features of the traversable area are extracted by detecting the his-
togram peaks based on the assumption that each surface is characterised by a
certain combination of saturation, chrominance and texture density levels. Each
histogram peak is considered as a feature with �ve attached properties:

� Left histogram peak edge: The point where the left side of the peak meets
the �mean level�1 line

� Right histogram peak edge: The point where the right side of the peak
meets the �mean level� line

� Histogram peak value: The peak value of the low-resolution histogram
� Mean segment value: The mean value of the left and right edges of the
histogram peak

� Age: The time that the peak has remained consistent (in terms of persistence
over multiple image frames). A peak is considered as a valid feature only if
its age is above a certain threshold. In our tests, the age threshold was set
to 10 frames (0.4 sec) with a maximum possible age of 30 frames (1.2 sec).

1 De�ned as the mean of all the histogram values



The left and right histogram peak edges form a histogram segment. Each image
pixel is marked as traversable only if its value falls within one of the histogram
segments. The remaining pixels are marked as non-traversable. In most cases,
the histogram will have only one main segment thus the image will essentially
be thresholded. However, more complex surfaces may result in two or more
histogram peaks and thus two or more segments. This feature makes the current
approach suitable for identifying simple as well as composite traversable surfaces.
At this stage, we have four segmented image arrays for each of the four inputs.
These arrays are then stored in a temporal memory structure as described in
the next section.

2.3 Temporal memory model and correlation

Creating high-level representations of complex raw data can be improved by in-
troducing a temporal memory structure as a way of reducing noise and increasing
system accuracy and reliability. This approach proposes the use of temporal be-
haviour analysis on the output of the segmentation as a top-level �lter before cor-
relation. Speci�cally, the segments identi�ed by histogram analysis are tracked
over a series of video frames in order to check their consistency. This is done
by assigning a con�dence level to each type of surface, which adjusts depending
on whether a similar surface appears repeatedly or not. In this way, the system
compensates for noise and image blur on a frame-by-frame basis. Similarly, each
grid cell of the segmented images is also assigned a con�dence level, which in-
creases if its status as �traversable� or �non-traversable� remains unchanged over
time. The �nal output consists of four new �traversability� maps based on the
saturation, saturation-based texture, mean chroma and chroma-based texture
analysis over time. The �nal traversability map is then derived by majority vot-
ing. Although, more sophisticated techniques could have been implemented, this
speci�c one was preferred as the best compromise between overall robustness
and real-time performance. Four di�erent levels of traversability are possible for
each pixel as illustrated in Figure 4b, where the darker shades of grey indicate
non-traversable areas.

3 Results

The presented approach has been evaluated using a video dataset comprising of
sequences captured under a wide range of environmental conditions and di�erent
terrain types (Table 1, Figure 5). In each video, path and obstacle boundaries
(ground truth) were manually marked at 1 sec intervals. The algorithm output
was compared to the ground truth and its accuracy was derived as follows:

Accuracy (%) =

1−

M−1∑
i=0

N−1∑
j=0

(|gij − oij |)

M ×N

× 100 (2)



where gij is the ground truth array of size M ×N and oij is the output array of
size M×N . In each of the gij and oij arrays the traversable pixels are denoted by
`1' and the non-traversable pixels by `0'. Error measurement is then performed
by calculating the absolute di�erence of the two arrays. Note that throughout
testing no horizon level was used although this would normally increase the
system performance and accuracy further. The results for each scenario are listed
in Table 2, where the algorithm accuracy was derived using di�erent number of
input channels as follows: a) 1-channel test : Using saturation only, b) 2-
channel test : Using saturation and saturation-based texture, c) 3-channel
test : Using saturation, saturation-based texture and mean chroma and d) 4-
channel test : Using saturation, saturation-based texture, mean chroma and
chroma-based texture.

a) b)

Fig. 4. a) Chroma-based analysis: Areas of low chrominance are eliminated including
the foreground water re�ections, b) Segmentation result after temporal analysis

The algorithm has generally been robust in predicting the traversability of
an area regardless of the image quality, noise and camera vibration. Figure 5
provides some characteristic examples of the system output. As we can see from
Table 2, a performance of between 95.2% - 97.8% against the ground truth is
achieved over a range of conditions (cloudy, wet, sunny, shadow, snow) and a
range of terrains (concrete, grass, soil, tarmac, snow) with varying levels of vi-
bration (empirically) recorded on the vehicle platform (Figures 4b, 5). The error
is measured for each test by calculating the standard deviation of the samples.
The overall accuracy and error are then derived by calculating the weighted
mean. It should also be noted that using more input channels does not always
increase the system accuracy and as a matter of fact the system can sometimes
perform better with fewer inputs. This is logical since the colour properties of a
surface change with weather and lighting conditions. As a matter of fact, if the
system had chosen the right number of input channels for each test, the mean
accuracy would have been 97.9% ± 2.5% (based on the maximum accuracy per
test as highlighted by italic characters in Table 3). Given the subjective nature
of ground truth labelling such a result is also subject to a ≈2% error, which is
highly acceptable within an autonomous driving scenario.

The evaluation was done using the architecture described in Figure 1, which
performed in real-time (25 frames per second) when implemented in C++ and ex-



ecuted on a 2GHz Intel Core2Duo CPU using up to four input channels. The cam-
era was mounted on a vehicle that was moving at approximately walking pace.
While testing, most obstacles were accurately detected as non-traversable areas
except in situations where they were indistinguishable from the underlying sur-
face. Regarding changing environmental conditions (Table 1), the performance
was good, although re�ections were sometimes detected as non-traversable areas.
The video dataset, ground truth data and results can be accessed via the following
URL: http://tiny.cc/yannis.

ID Conditions Terrain Type Vibrations Samples

1 Cloudy Dry concrete Light 81

2 Cloudy Wet concrete Light 103

3 Cloudy Muddy soil, grass, gravel Medium 10

4 Sunny Wet concrete Light 20

5 Complex Shadows tarmac Very Intense 100

6 Sunny Dry poor quality tarmac Very Intense 18

7 Strong shadows concrete Light 56

8 Snow snow-covered tarmac Medium 104

Total 492

Table 1. Environmental and terrain conditions during testing

1-channel 2-channel 3-channel 4-channel

ID Weight Accuracy Error Accuracy Error Accuracy Error Accuracy Error

1 0.16 94.87% 3.38% 97.63% 1.73% 96.18% 2.20% 97.04% 1.47%

2 0.21 93.68% 4.04% 98.33% 1.09% 98.52% 1.32% 98.72% 0.86%

3 0.02 94.35% 2.42% 95.47% 2.96% 97.79% 1.90% 98.10% 2.37%

4 0.04 97.12% 4.04% 99.12% 0.74% 99.42% 0.24% 99.24% 0.41%

5 0.20 92.47% 8.75% 96.07% 5.45% 95.44% 5.50% 95.41% 6.03%

6 0.04 96.46% 3.22% 98.24% 1.32% 96.70% 2.81% 96.47% 2.30%

7 0.11 98.95% 1.07% 99.14% 0.73% 99.20% 0.66% 99.05% 0.86%

8 0.21 97.01% 4.43% 98.18% 3.63% 98.06% 3.04% 98.09% 3.81%

Weighted mean 95.19% 4.57% 97.79% 2.61% 97.44% 2.63% 97.60% 2.70%

Table 2. Algorithm accuracy results in changing conditions using varying number
of input channels (the numbers in bold-italic font denote the test with the highest
accuracy in each row)

4 Conclusions

In this paper an e�ective real-time methodology was presented for detecting
traversable surfaces by fusing colour and texture information from HSL, YCbCr
and LAB colourspaces to perform image segmentation using a temporal memory
model. By initially assuming that the area in front of the vehicle is traversable,
the algorithm compares the characteristics of the �safe window� to the rest of
the image and creates a �traversability� map. Furthermore, the temporal infor-
mation is used to �lter noise and thus improve system robustness. Testing has



proved that this approach is well-suited for autonomous navigation in unstruc-
tured or semi-structured environments (up to 97.8% ±2.6% accuracy) and can
perform in real-time on platforms with limited processing power. Future work
will concentrate on developing an algorithm that can be trained to classify the
environmental and terrain conditions in order to optimise colour space fusion.
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