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Abstract

Modern machine learning models, that excel on computer
vision tasks such as classification and object detection,
are often overconfident in their predictions for Out-of-
Distribution (OOD) examples, resulting in unpredictable
behaviour for open-set environments. Recent works have
demonstrated that the free energy score is an effective mea-
sure of uncertainty for OOD detection given its close rela-
tionship to the data distribution. However, despite that free
energy-based methods representing a significant empirical
advance in OOD detection, our theoretical analysis reveals
previously unexplored and inherent vulnerabilities within
the free energy score formulation such that in-distribution
and OOD instances can have distinct feature representa-
tions yet identical free energy scores. This phenomenon oc-
curs when the vector representing the feature space differ-
ence between the in-distribution and OOD sample belongs
to the null space of the last layer of a neural-based classi-
fier. To mitigate these issues, we explore lower-dimensional
feature spaces to reduce the null space footprint and in-
troduce novel regularisation to maximize the least singu-
lar value of the final linear layer, hence enhancing inter-
sample free energy separation. We refer to these techniques
as Free Energy Vulnerability Elimination for Robust Out-
of-Distribution Detection (FEVER-OOD). Extensive exper-
imentation shows that FEVER-OOD improves OOD de-
tection in CIFAR-10 with 28.22% FPR95 and 94.78 AU-
ROC vs 33.66% FPR95 and 92.15 AUROC of the baseline
model, CIFAR-100 with 42.77% FPR95 and 89.98 AUROC
vs 50.96% FPR95 and 88.06 AUROC of the baseline model,
and achieves state of the art OOD detection in Imagenet-
100, with average OOD FPR95 of 36.50% and an AUROC
of 92.74 when used with the Dream-OOD model, compared
with a 39.33% and 91.84 AUROC without FEVER-OOD.

1. Introduction
Out-of-distribution (OOD) detection (c.f. anomaly/outlier
detection), aims to identify abnormal samples that devi-
ate significantly from a given data distribution. Whilst
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Figure 1. FEVER-OOD improves baseline Free Energy-based
OOD detection methods, where baseline methods predict OOD
classes as in-distribution (left, blue), while FEVER-OOD classi-
fies them as OOD (right, green).

OOD is essential in developing deployable machine learn-
ing systems, to ensure valid inference only on data drawn
from same distribution used in training [24, 36, 44], real-
world deployments often involve scenarios where models
encounter unseen OOD classes that could otherwise under-
mine decision stability and hence wider system robustness.

Methods such as deep ensembles [23], ODIN [27],
Mahalanobis distance-based detection [25], and general-
ized ODIN [16] all utilize softmax() to differentiate in-
distribution from OOD. Whilst intuitive, such approaches
often struggle as deep neural networks commonly yield
overly high softmax() scores, even for inputs far from
the training data distribution [31]. Given OOD and in-
distribution samples should have significant spatial separa-
tion in any given feature space, Liu et al. [29] developed an
alternative scoring function to effectively measure the align-
ment of a given sample to an a priori learned distribution.
Denoted as the free energy scoring function, this formula-
tion demonstrates superior OOD performance across both
classification [7–9] and detection tasks [6, 7, 18, 21].

Despite free energy-based methods representing a signif-
icant empirical advance in OOD detection, our theoretical
analysis reveals previously unexplored and inherent vulner-
abilities within the free energy score formulation that could
impact their practical reliability. These vulnerabilities re-
veal that in-distribution and OOD instances can have dis-
tinct feature representations yet produce identical free en-



ergy scores. This phenomenon occurs in the feature space
when the vector direction representing the difference be-
tween an in-distribution and an OOD sample lies within the
null space of the last layer of neural-based classifier. Such
regions, effectively “blind spots” in terms of OOD, lead
to OOD and in-distribution generating identical or near-
identical free energy score values.

To mitigate these issues, we explore lower-dimensional
feature spaces to effectively reduce the size of the null
space. In addition, we also introduce a novel regulariser
to maximize the least singular value of the final linear layer,
hence enhancing inter-sample free energy separation to im-
prove OOD robustness. We refer to these techniques as
Free energy Vulnerability Elimination for Robust Out-of-
Distribution Detection (FEVER-OOD).
In summary, our key contributions in this paper are:
• The identification of inherent free energy score vul-

nerabilities, where under null-space conditions, in-
distribution and OOD instances will yield similar free en-
ergy scores despite differing feature representations. De-
noted as Null Space Vulnerabilities (NSV) such condi-
tions readily occur when the feature dimension exceeds
the number of classes. Additionally, such free energy
similarity can be influenced by the least singular vector
(LSV) of the last linear layer of a neural-based classifier,
leading to what we denote as Least Singular Value Vul-
nerabilities (LSVV). Both vulnerabilities negatively im-
pact in-distribution to OOD discrimination.

• Novel formulations that mitigate the NSV and LSVV im-
pact (Fig. 1). To address NSV, we introduce an addi-
tional layer to reduce the null space whilst for LSVV,
we develop an LSV Regulariser that maximizes the least
singular value, guaranteeing detectable energy variations
from small feature-space differences and hence enhanc-
ing inter-sample energy scores discrimination. Further-
more, we explore a Condition Number Regulariser to
promote balanced energy changes for displacements in all
feature-space direction hence ensuring improved unifor-
mity in energy score variations.

• Comprehensive experiments and ablation studies using
established benchmark datasets over both object classifi-
cation and detection tasks, that demonstrate the effective-
ness of FEVER-OOD in improving OOD detection per-
formance. Specifically, Dream-OOD [8] with FEVER-
OOD trained on Imagenet-100 [35] as in-distribution de-
creases the FPR95 from 39.33% to 36.50% and increases
the average AUROC from 91.84 to 92.74, achieving state-
of-the-art performance for OOD detection.

2. Related Work

Identifying OOD samples is a crucial yet inherently chal-
lenging problem, as models are not exposed to, and hence
cannot reliably differentiate, OOD samples.

OOD Detection: to overcome this challenge, researchers
have begun incorporating additional data during training to
establish a more conservative and safe decision boundary
against OOD inputs. Some methods [1, 19] have used unla-
beled data to regularise model training while still focusing
on classifying labeled in-distribution data, while others [2]
leverage human assistance to strategically label examples
within a novel maximum disambiguation region. Despite its
potential, leveraging unlabeled data is non-trivial due to the
heterogeneous mix of in-distribution and OOD instances.
The absence of a clean OOD set presents significant chal-
lenges in designing effective OOD learning algorithms. A
different branch of works incorporate post-hoc methods, fo-
cusing on designing OOD scoring mechanisms at test time.
Hendrycks and Gimpel [15] introduced the maximum pre-
dicted softmax() probability as an in-distribution score func-
tion, establishing an initial baseline for scoring OOD detec-
tion. Similarly, ODIN [27] aims to widen the gap between
values in the softmax() score vectors by temperature scaling
and gradient-based input perturbation, enhancing the sepa-
ration between in-distribution and OOD instances. Lee et
al. [25] use the Mahalanobis distance between the average
softmax() vectors of images and incorporate intermediate
features to improve detection performance and robustness.
Nonetheless, the misalignment between the softmax() score
and the true data density [29, 32] ultimately makes these
techniques a suboptimal solution to OOD detection. Closer
to our work, Cook et al. [4] identify null space adversar-
ial attacks, proposing that instances with large magnitude
of their projection onto the span of the null space of a neu-
ral network classifier would likely be an outlier. Similarly,
Wang et al. [41] propose that since the features lie in low-
dimensional manifolds, outliers are likely to deviate from
the principal subspace, i.e. the span of the eigenvectors or
the largest eigenvalues, of the in-distribution data. There-
fore, OOD instances are detected with respect to the magni-
tude of the component of the perpendicular subspace to the
principal subspace.

Energy-based OOD Detection: to address these limita-
tions, Liu et al. [29] propose to use a free energy-based
in-distribution score function instead of the softmax() score
to identify OOD instances. This approach regularises the
model to produce lower energy values for in-distribution
and higher energy values for auxiliary outliers, creating a
significant energy gap that enhances the model ability to
detect OOD samples. Energy-based OOD modeling has en-
abled novel outlier synthesis paradigms. For instance, Du et
al. [7] propose virtual outlier synthesis (VOS) by sampling
outliers from low-likelihood in-distribution regions. VOS
has shown to be effective for classification and object-level
OOD detection. Further outlier synthesis techniques based
on VOS have been proposed, including using normalizing
flows [21], sampling based on the in-distribution boundary



instances [39] or extending VOS when class labels are un-
available [18]. In addition, VOS techniques arensuitable for
object detection [7, 21]. Whilst VOS and subsequent works
synthesize outliers in the feature space, Dream-OOD [8]
uses Stable Diffusion [34] to generate outliers in the pixel-
space, learning better discriminative free-score values for
OOD instances and providing visual examples of outliers.
Energy-based methods have shown great performance, be-
coming state-of-the-art in several benchmarks (e.g., Dream-
OOD [8] for ImageNet-100 in-distribution), hence we focus
in the properties of these methods. Notwithstanding that
the core idea of the energy score is that OOD samples must
have a significantly different free energy than in-distribution
sample, we examine some inherent vulnerabilities in the en-
ergy formulation based on the null space and least singular
value of the last linear layer of neural-based classifiers.

3. Preliminaries: Free Energy Score
The goal of OOD detection is to detect outliers, v, that have
a low probability in the true (unknown) in-distribution den-
sity p(x). However, the computation of p(x) is usually un-
feasible or computationally untractable, so we instead re-
sort to additional information. Now consider that we also
have a set of in-distribution categories {1, . . . ,K} such that
if we know the joint probability distribution, p(x, k), for
k ∈ {1, . . . ,K}, we could marginalize p(x). Nonethe-
less, since the actual joint probabilities p(x, k) might be
also untractable, we could instead use non-negative arbi-
trary potential functions ϕ(x, k) that measure the affinity of
the states of x and k [12]. In this sense, we can construct
the unnormalized probability:

p̃(x) =
K∑

k=1

ϕ(x, k) (1)

that gives an idea of the likelihood x. Furthermore, energy-
based models enforce the non-negative constraint of ϕ by:

ϕ(x, k) = exp (−E(x, k)) , (2)

where E is an unbounded arbitrary function called the en-
ergy. By substituting Eq. (2) into Eq. (1) and taking the
negative log1, we get a value known as the free energy:

F(x) = − log p̃(x) = − log

K∑

k=1

exp(−E(x, k)) , (3)

and more recently used as a concept in OOD detection
[7, 8, 18, 21, 29]. To get the actual density p(x), we must
compute the normalizing partition function of Eq. (1); since
we are interested in distinguishing between in-distribution
and OOD, F(x) thus serves well for this purpose.

1N.B. the signs of the free energy and the argument of the exponent of
ϕ are arbitrarily negative for historical reasons.
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Figure 2. Vulnerabilities of Free Energy-based OOD detection.
Directions in the Null Space do not change the energy, while the
LSV direction has minimal change, compared to other directions.

In a general machine learning context, a classifier
f(x; θ) : Rd → RK with learned parameters θ assigns cat-
egorical unnormalized probabilities fk(x; θ), called logits,
for a given x ∈ Rd. While the logits are usually normalized
using the softmax() function in order to obtain a probabil-
ity distribution, they can also be used as the energy E in
Eq. (2). This realization enables the use of the free energy
(Eq. (3)) as a measure of uncertainty for a classifier:

F(x) = − log
K∑

k=1

exp(fk(x; θ)) . (4)

Liu et al. [29] demonstrate that Eq. (4) is superior for
effective OOD detection when compared to use of soft-
max() whilst Du et al. [7] explicitly use the free energy
score (Eq. (4)) to perform binary classification between in-
distribution and OOD by training with synthetic outliers.

4. Vulnerabilities of the Free Energy Score
Although the free energy (Eq. (4)) is an effective uncertainty
measure for OOD detection [7, 29], here we examine some
inherent vulnerabilities when used in conjunction with a
neural network based classifier. Firstly, Sec. 4.1 investigates
OOD instances that have similar energies as in-distribution
samples, whilst Sec. 4.2 discusses minimal changes in free
energy, and finally Sec. 4.3 outlines our proposed approach
to minimize the impact of these vulnerabilities.

4.1. Null Space Vulnerability
Consider a neural network-based classifier f = (g ◦ h)(x),
where h(x) : Rd → Rd′

encodes the input into a d′-
dimensional feature vector and g : Rd′ → RK is the last
layer of the neural network that transforms the features into
unnormalized class probabilities (i.e., the logits). If g is a
linear layer (as for most classifiers [5, 14, 43]), then:

f(x) = W⊤
clsh(x) , (5)

where Wcls ∈ Rd′×K are learnable weights. Hence, the
logits fk(x; θ) correspond to the k-th index of f(x).



The core idea of energy-based OOD is that outliers v
have a significantly different free energy, F(v), from in-
distribution samples, F(x). Since OOD instances should be
far from in-distribution samples in the feature space [7, 39],
the expected distance from the inlier features h(x) and out-
lier features h(v) should be greater than a given boundary
distance, db, as follows:

E [∥h(x)− h(v)∥] ≥ db , (6)

for a norm ∥·∥. In other words, the inliers remain bounded
to a region in the feature space while outliers are un-
bounded. Therefore, the expected distance between inliers
and outliers is greater than a bounding distance db. Subse-
quently, we can rewrite Eq. (6) as:

h(v) = h(x) + δ , (7)

where δ is a vector with E [∥δ∥] ≥ db. By substituting
Eq. (7) into Eq. (5) we obtain the following:

f(v) = W⊤
cls (h(x) + δ) = f(x) +W⊤

clsδ . (8)

However within this formulation, if Wcls has more rows
than columns, which occurs when the feature dimension
is larger than the number of classes, the size of the null
space of W⊤

cls , called the nullity, is nullity(W⊤
cls) =

d′ − rank(Wcls) due to the rank-nullity theorem. Math-
ematically, this means that there exists a linear subspace
Null(W⊤

cls) ⊂ Rd′
such that if δ ∈ Null(W⊤

cls) then
W⊤

clsδ = 0. Within our OOD context, if an outlier in-
stance, v, has a feature representation, h(v), such that its
difference with respect to the inlier feature representation,
h(x), of any inlier instance, x, is in the null space of the last
layer of the classifier, then their free energy scores are the
same:

h(v)− h(x) ∈ Null(W⊤
cls) ⇒ F(x) = F(v) . (9)

Practically, Eq. (9) is telling us that it is possible for in-
distribution and OOD instances to have different feature
representations (satisfying the condition of Eq. (6)) and yet
have the same free energy score, as depicted in Fig. 2. This
fundamentally challenges the notion that free energy is an
effective mechanism for OOD detection as any approaches
reliant on Eq. (3), such as [7, 8, 18, 21, 29], contain inherent
“detection blind-spots” as per Eq. (9). We denote Eq. (9) as
the Null Space Vulnerabilities (NSV) of classifier f with
size nullity(W⊤

cls) = d′ − rank(Wcls). An approach to
minimize this vulnerability is outlined in Sec. 4.3.

As an additional remark, NSV are inherent in energy-
based methods; while some post hoc methods use the pro-
jection of features onto the null space as a discriminator be-
tween in-distribution and OOD [4, 41], energy-based meth-
ods use the classification logits for detecting outliers, hence
the null space projection does not change the OOD score.

4.2. Minimal Change of Free Energy
We now turn our attention to the case where δ is not in
the null space of W⊤

cls . Furthermore, we can focus on δ
orthogonal to Null(W⊤

cls), since every vector in the do-
main of W⊤

cls can be decomposed into one component in
Null(W⊤

cls) and one component in Null(W⊤
cls)

⊥, and the
effect of the component in Null(W⊤

cls) will be dealt with
using the null space reduction method (Sec. 4.3).

In order to create more discriminative OOD detectors
based on the free energy score, we investigate cases where
the difference in OOD and in-distribution free energy is
minimal. We can state our problem formulation to find the
case that minimizes the free energy difference:

min
δ:∥δ∥≥db,

δ∈Null(W⊤
cls)

⊥

|F(v)−F(x)|

= min
δ:∥δ∥≥db,

δ∈Null(W⊤
cls)

⊥

∣∣∣∣∣log
∑K

k exp(fk(h(x)))∑K
k exp(fk(h(x) + δ))

∣∣∣∣∣ .
(10)

Whilst in Eq. (10) we set ∥δ∥ ≥ db instead of E [∥δ∥] ≥
db, in reality we are just interested in the case of non-zero
δ since otherwise the solution would be trivial. Whilst the
solution to Eq. (10) may be challenging to obtain, we note
the difference in free-energies tends to 0 if the value inside
the log() function tends to 1. This is equivalent to making
fk(h(x)) and fk(h(x) + δ) similar for all k. Therefore,
considering that fk is in the form of Eq. (5), our problem
consists on finding the following proxy minimum:

min
δ:∥δ∥≥db,

δ∈Null(W⊤
cls)

⊥

∥W⊤
cls(h(x) + δ)−W⊤

clsh(x)∥

= min
δ:∥δ∥≥db,

δ∈Null(W⊤
cls)

⊥

∥W⊤
clsδ∥ .

(11)

For the L2-norm in Eq. (11), we thus obtain:

min
δ:∥δ∥2≥db,

δ∈Null(W⊤
cls)

⊥

∥W⊤
clsδ∥2 = dbσmin(Wcls) , (12)

where σmin(Wcls) is the least singular value of Wcls (see
further mathematical formulation details in Supp. Mat.).

Subsequently, Eq. (12) holds for the case where δ is in
the direction corresponding to the least singular value, such
that the change in the free energy will be smaller than any
other direction for δ (and considering δ ∈ Null(W⊤

cls)
⊥).

We name this result (from Eq. (12)) the Least Singular
Value Vulnerabilities (LSVV) of f . In our OOD context,
it means that there could exist some outliers far from the in-
lier distribution, in terms of Eq. (6), with similar free energy
scores because they may fall in the direction of the least sin-
gular value of Wcls . Again, this fundamentally challenges



the notion that free energy is an effective mechanism for
OOD as free energy has been shown to be non-linear with
respect to a given feature representation, h().

This analysis is itself inspired by the seminal adversar-
ial attacks analysis of Simon-Gabriel et al. [37], where they
instead maximize the change in the classifier response for
small input perturbations. Whilst here we are modelling the
opposite problem, (i.e., the minimum change in the clas-
sifier for perturbations larger than a non-zero value), we
could consider this analysis as an effective adversarial at-
tack mechanism for the OOD domain.

4.3. Null Space Reduction & Regularisation
In this section, we introduce our Free Energy Vulnerabil-
ity Elimination for Robust OOD Detection (FEVER-OOD)
framework, where we explore readily available methods to
minimize the NSV (Sec. 4.1) and LSVV (Sec. 4.2) impact
potential within free energy score based OOD approaches.
Null Space Reduction (NSR). For NSV, we propose to re-
duce the null space by adding an extra linear layer g′ :
Rd′ → Rr, where we choose r < d′ to reduce the size
of the NSV (Fig. 3). We denote this method as r-null space
reduction (r-NSR). Therefore, the new classifier becomes
f ′ = g ◦ g′ ◦h such that the feature representation of a sam-
ple is in Rr and is given instead by (g′ ◦ h)(x). Effectively,
within an OOD context, we are promoting better discrimi-
nation between OOD and in-distribution instances.
Least Singular Value Regulariser (LSVR). To minimize
the impact of LSVV, we maximise σmin(Wcls) by adding
an LSVR to the loss function L of a baseline method:

LLSV := L+ λLSV σ
−1
min(Wcls) , (13)

where λLSV is a scalar hyperparameter that controls the
contribution of the LSV regulariser. It is additionally noted
that alternatively maximizing the LSV might also increase
the rest of the singular values, resulting in more significant
changes of energy in all directions. In the context of OOD
detection, LSVR increases the discriminative capacity for
OOD detection of baseline methods.
Condition Number (CN) Regulariser. Whilst the LSV
regulariser will increase the change in energy for δ in the
LSV direction, there is no constraint with regard to the dis-
tribution over all other directions. For this reason, we ex-
plore a Condition Number Regulariser (CNR):

LCN := L+ λCNκ(Wcls) , (14)

where κ(Wcls) is the condition number of the Wcls matrix,
i.e., the ratio of the greatest and least singular values. In-
tuitively, this will encourage equalized energy changes for
displacements in all directions where we note that Eq. (14)
similarly assumes use of the L2-norm as per Eq. (12). A
different approach to the CNR is the orthogonal constraint
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Figure 3. Null space reduction. We add an extra layer g′ to create
r-dimensional features, reducing the size of the null space.

∥WclsW
⊤
cls − I∥. However, this method adds the additional

constraint that the singular values must be close to one,
which might be a stronger prior than the CNR, hence we
opt for the latter. The gradients for the singular values in
Eqs. (13) and (14) are detailed by Lewis and Sendov [26]
(Proposition 6.2) and further discussed in the Supp. Mat.

5. Experimental Details

We study the impact of FEVER-OOD on free energy base-
line methods (Sec. 5.1) across different standard datasets
(Sec. 5.2). Implementation details are given in Sec. 5.3.

5.1. Baseline Methods and Evaluation Metrics

Three free energy baseline methods for image OOD detec-
tion that use the free energy score are tested: VOS [7], FFS
[21] and Dream-OOD [8]. These baseline methods learn
a small MLP ψ : R → (0, 1) that uses the free energy in
Eq. (4) to predict an uncertainty score. Since OOD data
is unavailable during training, these methods use synthetic
outliers to train ψ. While VOS and FFS synthesize outliers
in the feature space h(x), Dream-OOD generates outliers
in the pixel space using Stable Diffusion [34]. Additionally,
VOS and FFS are also implemented as object detectors for
object-level OOD detection, synthesizing outliers before the
last layer of the classification head of a Faster RCNN [33].

We follow standard evaluation metrics, reporting the
false positive rate for OOD detection at 95% true positive
rate of in-distribution detection (FPR95) and the area un-
der the receiver operating characteristic curve (AUROC).
We also assess the effect of our proposed techniques into
the main in-distribution task (accuracy for classification and
MS-COCO [28] mean average precision (mAP) for object
detection). FPR95 and AUROC metrics are reported using
a single intersection-over-union threshold for object detec-
tion, corresponding to the one that maximises the F-1 score,
as described by Harakeh and Waslander [13].



Table 1. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR Regularizer FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - 50.05±5.70 86.79±1.28 39.15±10.52 91.73±2.88 40.88±1.75 89.54±0.69 8.22±1.02 98.36±0.20 30.01±4.44 94.31±0.84 33.66±2.21 92.15±0.59 94.83±0.16

- λLSV = 1.0 55.58±6.35 86.71±2.35 43.00±3.16 92.09±0.94 38.78±2.51 91.14±0.56 7.36±1.59 98.46±0.32 21.23±6.95 96.23±1.17 33.19±3.20 92.92±0.85 94.66±0.18

- λCN = 0.1 50.80±3.06 85.39±0.79 30.78±2.95 94.04±0.58 41.60±1.40 88.77±0.74 8.50±0.82 98.30±0.10 30.91±4.54 93.41±1.68 32.52±1.25 91.98±0.46 94.69±0.16

96 λLSV = 1.0 40.86±4.83 92.12±1.05 41.92±16.11 93.20±2.61 35.69±2.29 92.61±0.57 4.95±1.49 98.93±0.24 17.68±5.26 97.04±0.85 28.22±4.18 94.78±0.85 94.74±0.17

64 λLSV = 1.0 44.41±5.39 91.26±1.29 34.68±10.93 94.39±1.72 35.85±2.56 92.42±0.53 5.68±0.57 98.75±0.13 24.03±5.91 96.02±0.95 28.93±3.86 94.57±0.66 94.75±0.13

32 λLSV = 0.001 46.53±3.77 89.67±1.09 27.84±9.47 95.29±1.08 37.33±1.63 91.77±0.39 5.65±0.77 98.82±0.11 24.09±6.77 95.68±1.35 28.29±3.33 94.25±0.55 94.68±0.07

10 - 53.20±3.90 88.97±0.73 35.62±9.66 94.41±1.28 45.73±6.29 89.73±1.69 11.72±3.39 97.93±0.46 41.80±14.35 92.51±3.03 37.61±4.00 92.71±0.97 91.95±2.32

FFS - - 52.86±4.49 83.47±1.67 38.67±11.21 89.74±5.19 44.65±1.29 87.47±0.77 6.59±0.92 98.67±0.17 31.34±1.88 93.24±0.97 34.82±2.03 90.52±0.98 94.69±0.15

- λLSV = 0.001 50.74±3.98 84.93±0.75 32.25±12.16 92.97±3.60 42.99±2.30 88.30±1.10 5.76±1.23 98.82±0.27 28.16±6.45 94.18±1.98 31.98±3.10 91.84±1.28 94.73±0.12

- λCN = 1.0 50.08±3.86 84.92±1.85 30.91±6.19 92.77±2.33 45.69±2.59 87.16±0.75 6.22±0.65 98.73±0.11 26.60±3.64 94.80±0.64 31.90±2.51 91.67±0.94 94.85±0.20

96 λLSV = 1.0 48.11±5.15 89.84±1.51 40.65±15.47 93.32±3.16 36.37±2.28 92.29±0.60 5.22±1.35 98.89±0.18 24.84±10.08 95.82±1.68 31.04±5.05 94.03±1.06 94.71±0.08

64 λLSV = 1.0 51.70±5.67 88.81±1.09 33.02±14.09 94.60±2.30 39.05±3.73 91.53±1.23 5.56±1.95 98.84±0.30 26.63±7.51 95.65±1.12 31.19±4.32 93.89±0.69 94.68±0.08

32 - 46.75±3.49 89.61±1.40 31.77±8.73 94.44±1.35 41.51±3.38 90.72±1.02 4.93±1.11 99.04±0.16 28.92±11.23 94.49±2.94 30.78±3.70 93.66±0.95 94.79±0.18

10 - 54.72±5.89 84.77±3.23 45.70±12.95 91.49±2.27 41.52±3.27 89.51±1.31 8.21±3.59 98.33±0.67 28.58±7.75 94.30±1.82 35.75±5.26 91.68±1.38 94.54±0.17

5.2. Datasets
We assess FEVER-OOD with standard datasets for both
classification and object detection. For image-level OOD
detection (i.e., image classification), we train VOS and
FFS using the CIFAR-10 and CIFAR-100 [20] datasets as
in-distribution while testing OOD detection in five non-
overlapping datasets: Textures [3], SVHN [30], Places365
[47], LSUN [45] and iSUN [11]. We also test Dream-
OOD with the CIFAR-100 dataset as in-distribution data
with the same OOD datasets. Additionally, we also train
Dream-OOD with the Imagenet-100 dataset, a 100 classes
partition of Imagenet [35], as in-distribution while testing
OOD detection in four datasets: Textures [3], Places365
[47], iNaturalist [40] and SUN [42]. We use the PASCAL
VOC [10] dataset as in-distribution for object-level OOD
detection using VOS and FFS and test for OOD detection
on the MS-COCO dataset [28] removing images containing
objects with overlapping in-distribution categories [7].

5.3. Implementation details
We follow the established architectural choices of prior
works. For image-level OOD detection with VOS and
FFS, we use a WideResNet-40 [46] with a 128-dimensional
feature space. We choose different NSR values ranging
from the feature dim to the number of classes, gradu-
ally decreasing the nullity. For CIFAR-10, we evaluate
the {96, 64, 32, 10}-NSR, while for CIFAR-100 we assess
{114, 100}-NSR. With respect to Dream-OOD models, we
use a ResNet-34 [14] with 512-dimensional feature space,
evaluating {256, 128, 100}-NSR for both CIFAR-100 and
Imagenet-100. Similarly, we reduce the feature space of
the classification head to 768, 512 and 265 dimensions for
VOS and FFS object detection experiments, having an orig-
inal 1,024-dimensional object-wise feature space (as per
Faster RCNN [33]). With regards to the LSVR and CNR,
we test with various loss weight values in all the archi-
tectures (1, 0.1, 0.01, and 0.001), to evaluate their impact
on model performance (except for Imagenet-100, where we
use λLSV = 0.001 and λCN = 0.01 based on CIFAR-100
experiments). We train all the models using the original

corresponding baseline settings. Details on the hyperpa-
rameters and the training regime for each model are given
in the Supp. Mat. To obtain reliable comparisons we use
deterministic learning via a fixed random seed for all exper-
iments. We run all experiments 5 times and report mean and
standard deviation for all metrics.

6. Results
We discuss the performance of FEVER-OOD against differ-
ent free energy based OOD detection models in classifica-
tion and detection. Tabs. 1 to 3 compare the use of FEVER-
OOD with the corresponding baseline methods. We report
different NSR as well as the best results obtained using
λLSV (Eq. (13)) or λCN (Eq. (14)), and their correspond-
ing value (we show both cases when no NSR is applied).
Extensive ablations are available in the Supp. Mat.
CIFAR-10. Tab. 1 shows the results of the VOS and FFS
architectures with CIFAR-10 as in-distribution. In general,
NSR and LSVR improve OOD detection for both VOS and
FFS models. The best performance using the VOS method
is achieved using a 96-NSR with LSVR, using a λLSV =
1.0, where the average AUROC increases to 94.78 and the
average FPR95 reduces to 28.22%, compared to an AUROC
of 92.15 and 33.66% of the baseline VOS model without af-
fecting the in-distribution accuracy. Similarly, the best FFS
setting is achieved with a 96-NSR and λLSV = 1.0, result-
ing in 94.03 AUROC and 31.04% FPR95, compared to the
baseline FFS model, with an AUROC of 90.52 and FPR95
of 34.82%, although the best FPR95 is achieved with 32-
NSR and no singular value regularization, with an FPR95
of 30.78. In general, it is seen that a large NSR (i.e., 10-
NSR) may decrease the AUROC and increase the FPR95.
Since VOS and FFS are techniques that synthesize outliers
in the feature space, a large reduction of the feature dimen-
sion might not allow for proper in-distribution understand-
ing, impacting in the OOD training of these techniques. Ad-
ditionally, it is also observed that LSVR yields better results
than CNR, and a value for λLSV = 1.0 is adequate for none
to moderate NSR, while smaller values for LSVR (or none)
are better for large NSR. While LSVR increases the differ-



Table 2. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).
FEVER-OOD OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR Regularizer FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - 81.24±2.11 76.01±0.80 76.09±6.51 83.18±3.59 80.53±1.46 76.25±0.78 37.86±4.06 93.21±0.68 79.34±1.60 76.43±1.44 71.01±1.23 81.02±0.40 76.04±0.22

- λLSV = 0.1 82.87±1.11 76.49±0.94 73.35±2.96 84.57±1.53 80.36±1.16 76.89±0.79 40.05±3.74 92.83±0.46 74.28±4.03 80.25±3.34 70.18±0.87 82.21±0.56 76.01±0.16

- λCN = 0.01 82.51±2.64 76.04±1.91 73.67±3.10 85.31±1.24 80.18±1.08 76.59±0.23 41.08±3.27 92.75±0.63 80.83±4.37 73.79±5.51 71.65±0.96 80.90±1.11 76.20±0.11

114 λLSV = 0.01 80.02±2.75 78.73±1.83 83.45±2.59 82.07±1.36 78.41±0.96 77.71±0.93 28.90±3.61 95.11±0.58 72.07±9.07 80.55±4.70 68.57±2.28 82.83±0.91 75.72±0.16

100 - 80.47±2.32 78.21±1.14 79.10±7.42 83.39±3.91 79.19±1.04 77.23±0.50 28.99±2.59 95.15±0.39 75.51±6.68 79.63±3.70 68.65±1.29 82.72±0.57 75.54±0.19

FFS - - 82.87±1.39 75.54±0.93 76.32±6.17 84.83±2.36 81.14±1.09 76.27±0.74 36.27±4.91 93.54±1.03 82.83±2.98 74.29±3.08 71.89±1.64 80.89±1.11 76.04±0.11

- λLSV = 0.01 80.95±1.34 76.53±0.70 83.12±5.59 81.61±2.92 80.19±0.84 76.58±0.49 32.93±4.05 94.20±0.51 79.05±5.16 77.28±3.23 71.25±2.11 81.24±0.72 76.27±0.28

- λCN = 0.001 80.27±2.76 76.78±1.53 78.57±7.32 82.57±2.95 80.40±1.09 76.40±0.53 32.91±4.90 94.06±1.02 80.71±7.90 74.49±5.57 70.57±2.41 80.86±0.88 76.05±0.16

114 λLSV = 0.001 79.26±2.67 78.16±1.50 74.28±7.13 85.37±3.20 79.45±0.85 77.25±0.61 24.10±1.42 95.94±0.17 73.61±5.82 80.61±2.49 66.14±1.91 83.47±0.98 75.45±0.37

100 - 77.69±2.97 78.62±1.02 77.84±9.62 83.40±3.52 80.41±0.72 76.58±0.35 21.91±0.95 96.25±0.11 79.60±6.06 75.79±5.17 67.49±2.03 82.13±0.85 75.48±0.28

Dream-OOD - - 62.20±1.02 83.84±0.38 73.05±1.92 84.56±0.21 77.95±1.97 79.43±0.17 39.90±2.01 92.87±0.44 1.70±0.11 99.58±0.04 50.96±1.44 88.06±0.60 75.61±0.19

- λLSV = 0.01 58.45±2.27 86.04±0.41 68.75 ±1.84 87.65±0.30 77.45±2.11 78.59±0.22 15.45±2.57 97.24±0.09 1.55±0.03 99.63±0.45 44.33±3.48 89.83±0.12 75.87±0.23

- λCN = 0.001 57.40±1.88 86.28±0.32 77.75±1.11 85.13±0.41 78.60±1.23 78.73±0.15 27.2±1.77 95.01±0.42 1.55±0.08 99.57±0.07 48.5±1.54 88.94±0.43 76.32±0.14

256 - 60.00±3.21 85.42±0.79 67.50±2.47 85.84±0.66 75.90±1.10 79.57±0.43 19.85±1.05 96.74±0.67 1.00±0.02 99.78±0.06 44.85±2.72 89.47±0.242 77.01±0.12

128 λLSV = 0.1 56.45±2.39 87.73±1.01 67.45±1.12 87.53±0.44 78.45±2.46 77.24±0.61 29.60±1.73 94.81±0.40 1.95±0.10 99.5±0.10 46.78±2.72 89.36±0.83 76.21±0.35

100 - 57.55±2.48 86.8±0.44 54.45±3.02 88.69±0.59 75.80±1.21 78.88±0.69 24.45±1.57 95.86±0.52 1.60±0.07 99.65±0.21 42.77±2.10 89.98±0.15 76.41±0.32

Table 3. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD OOD Datasets
iNaturalist Places365 SUN Textures AvgMethod

r-NSR Regularizer FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
ID Acc

Dream-OOD - - 23.98±2.08 95.94±0.26 41.75±1.72 92.48±0.12 40.85±1.13 92.76±0.09 50.73±0.85 86.21±0.29 39.33±1.08 91.84±0.12 87.76±0.19

- λLSV = 0.01 59.91±3.09 90.89±0.48 66.26±2.17 88.12±0.47 74.26±1.52 84.53±0.33 60.56±1.21 83.91±0.42 65.25±1.50 86.87±0.25 87.85±0.11

- λLSV = 0.001 59.71±3.53 90.97±0.70 65.01±1.90 88.39±0.45 73.93±1.58 84.69±0.49 60.51±1.46 84.01±0.51 64.79±1.69 87.01±0.45 87.77±0.13

256 - 23.84±1.73 95.80±0.30 44.35±1.71 92.14±0.30 42.92±1.98 92.46±0.33 44.38±1.81 88.60±0.54 38.87±1.29 92.25±0.23 87.57±0.24

128 λLSV = 0.01 23.46±2.54 95.93±0.36 43.37±1.47 92.19±0.22 42.42±1.60 92.44±0.29 41.86±1.09 89.48±0.27 37.78±1.45 92.51±0.22 87.60±0.11

100 λLSV = 0.01 22.24±0.81 96.16±0.14 41.08±3.03 92.59±0.44 40.39±2.84 92.91±0.40 42.31±0.97 89.30±0.37 36.50±1.67 92.74±0.21 87.42±0.15

(a) Dataset: CIFAR-10 (b) Dataset: CIFAR-100
Figure 4. Singular Values Spectrum.

ence in energy of outliers in or near the least singular vector
direction, the CN regulariser makes equalized free energy
changes for all directions. Since the latter effect might dis-
able directions with smaller energy changes than others, it
might also reduce the free energy change in the direction of
the largest singular value. Fig. 4(a) shows the singular value
spectrum of the baseline VOS model against the LSVR and
CNR versions for the CIFAR-10 dataset. It is seen that the
while both regularizers homogenize the singular values, the
CNR also reduces the most significant singular value. Fi-
nally, our experiments show that VOS achieves better re-
sults than FFS in CIFAR-10 OOD detection.
CIFAR-100. Tab. 2 shows the results for VOS, FFS
and Dream-OOD trained on the CIFAR-100 dataset as in-
distribution. The best models for VOS and FFS are achieved
with 114-NSR and LSVR, with a 68.57% FPR95 (-2.44%
VOS) and 82.83 (+1.81 VOS) AUROC for VOS-114-NSR
and 66.14% FPR95 (-5.75% FFS) and 83.47 (+2.58 FFS)
AUROC for FFS-114-NSR. However, despite these im-
provements, the performance of virtual outlier synthesis
methods is usually poor for several in-distribution classes
[44], hence the enhancement of these architectures is still
challenging. Regarding Dream-OOD, it is noted that the
best results are obtained by Dream-OOD-100-NSR, hav-
ing an FPR95 of 42.77% (-8.19% Dream-OOD) and 89.98

AUROC (+1.9 Dream-OOD). Finally, for the three energy
techniques (VOS, FFS and Dream-OOD), we observed that
the model does not converge when using 100-NSR and the
CNR (see Supp. Mat.), suggesting that the conditioning
number penalization does not allow the model to learn the
in-distribution task. Fig. 4(b) shows the singular value spec-
trum for the LSVR and CNR versions of the VOS model.
Differently from the CIFAR-10 experiments, it is seen that
LSVR keeps the most significant singular values similar to
the baseline but homogenizes the least significant singular
values, while the CNR keep all singular values at a low
level, hence explaining why it fails for this dataset.
Imagenet-100. We show the results of Dream-OOD with
Imagenet-100 as in-distribution in Tab. 3. Similar as with
CIFAR-100, the best results are obtained with NSR100, ef-
fectively eliminating the null space of the last layer (since
it becomes square and is not singular). Contrary to CIFAR-
100, LSVR has a negative impact when used alone. Con-
sidering that we use the same pre-training scheme as Du et
al. [8], adding LSVR and CNR on an already pretrained
last linear layer might affect the already formed feature
space. Hence, these regularisers benefit untrained NSR
modules. The best model, Dream-OOD-100-NSR with
LSVR, achieves an average 36.50% FPR95 and 92.74 AU-
ROC, compared to the baseline 39.33% FPR95 and 91.84
AUROC, becoming the state-of-the-art for Imagenet-100.
PASCAL VOC. We test FEVER-OOD techniques in object
detection task, where the goal is to detect object-level OOD
instances. Tab. 4 show the result for the baseline VOS and
FFS, taking PASCAL VOC [10] as in-distribution dataset.
For both tasks, we evaluate on two OOD datasets that con-
tain subset of images from: MS-COCO [28] and OpenIm-
ages [22], following the original works [7, 21]. The best-
performing model for VOS is VOS-768-NSR with CNR,



Figure 5. MS-COCO objects detected on OOD images by VOS baseline [7] (first row) and Fever-OOD (second row). Blue: OOD objects
detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD (ours).

Table 4. VOS results with PASCAL VOC as in-distribution
(Null Space Reduction (NSR) methods = our approach).

FEVER-OOD OOD Datasets
MS-COCO OpenImagesMethod

r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC
mAP

VOS - - - 50.29 87.77 53.09 86.58 0.489
- 0.001 - 49.96 88.10 52.26 85.80 0.489
- - 1 53.42 86.66 52.73 85.77 0.490

768 - - 48.94 87.94 52.34 86.33 0.489
768 0.01 - 50.08 87.78 51.71 86.04 0.493
768 - 0.01 47.47 88.15 49.36 86.32 0.491
512 - - 49.84 88.42 55.33 85.33 0.486
512 0.001 - 49.26 88.39 54.32 85.82 0.489
512 - 0.01 49.59 87.48 54.81 85.48 0.490
256 - - 47.88 88.49 52.41 86.39 0.486
256 0.01 - 48.51 88.36 50.52 86.12 0.491
256 - 0.001 49.1 88.27 51.47 86.08 0.489

FFS - - - 50.77 87.18 53.78 85.34 0.487
- 0.01 - 53.09 86.75 53.47 85.86 0.490
- - 0.01 50.36 87.65 51.19 85.98 0.485

768 - - 51.50 87.59 53.33 85.84 0.488
768 0.01 - 47.42 88.36 52.46 86.40 0.489
768 - 0.01 51.12 86.82 55.44 84.84 0.490
512 - - 46.93 88.82 53.89 86.28 0.491
512 0.01 - 47.42 88.36 52.46 86.40 0.488
512 - 0.01 51.42 87.05 54.98 84.55 0.490
256 - - 51.18 88.74 53.67 86.56 0.487
256 0.01 - 47.93 88.04 47.93 84.95 0.489
256 - 0.01 52.94 86.62 52.88 84.45 0.489

achieving average FPR95 scores of 47.47% and 49.36% on
MS-COCO and OpenImages, respectively, an improvement
of nearly 4% over the VOS baseline. For FFS, we achieve
a minimum FPR95 of 46.93% with FFS-512-NSR model
and 47.93% for the FFS-256-NSR model with the LSVR
for both OOD datasets. Additionally, our approach gener-
ally delivers higher AUROC scores compared to the FFS
baseline across both OOD datasets. Qualitative results are
illustrated in Fig. 5, where we visualize the prediction on
MS-COCO OOD images, using the baseline VOS (top) and
the best Fever-OOD model, i.e., VOS-768-NSR, with the
PASCAL-VOC as the in-distribution dataset, showing that
out framework outperforms baseline VOS in in detecting
outlier objects with a significantly lower false positive rate.

Computational overhead. The computational overhead
introduced by our method is minimal since we only add
an extra linear layer. For instance, the ResNet-34 used
in Dream-OOD takes 4.42 ± 1.15 ms/img and has 21.5M

params. Adding 256, 128, 100-NSR layers change the infer-
ence time to 3.91 ± 0.62, 4.44 ± 1.17, 4.13 ± 1.02 ms/img,
with an extra 105k, 27k, 10k params, which is negligible
compared with the total size of ResNet-34.

7. Conclusion
In this work, we present FEVER-OOD, a robust approach
for addressing critical vulnerabilities found in existing
energy-based OOD detection. Our method targets the Null
Space Vulnerabilities (NSV), where in-distribution and
OOD instances can produce similar free energy scores
despite differing feature representations, and Least Sin-
gular Value Vulnerabilities (LSVV), where energy score
similarities are influenced by the least singular vector of
the classifier last linear layer. These vulnerabilities are
especially problematic in high-dimensional feature spaces
where the feature dimension exceeds the number of classes,
impacting the effectiveness of OOD detection. To mitigate
these issues, FEVER-OOD incorporates strategies such
as reducing the null space through lower-dimensional
feature spaces and introducing a Least Singular Value
Regularizer to maximize the least singular value, enhancing
the distinction between energy scores of different samples.
Additionally, we propose a Condition Number Regularizer
to promote uniform energy changes for feature-space
displacements, fostering consistent energy variation and
improving detection robustness. Our comprehensive
evaluation on benchmark datasets, including applications
to the Dream-OOD framework with ImageNet-100 as
the ID dataset, demonstrates the significant effectiveness
of FEVER-OOD. Specifically, our approach achieves a
10.13% reduction in the average false positive rate and a
1.6% increase in AUROC, setting a new state-of-the-art
in OOD detection. Furthermore, our results highlight the
generalization capability of FEVER-OOD across different
detection architectures, showcasing its potential beyond
conventional classification settings. Future extensions of
FEVER-OOD could include applications to varied domains
and integration with other OOD detection frameworks to
further validate its versatility and performance in diverse
machine learning contexts. This work provides valuable
insights into enhancing OOD robustness and sets a founda-
tion for more resilient free energy-based detection methods.
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Supplementary Material

8. Mathematical Background
In this section we provide a detailed analysis of the mathe-
matical formulation of our methods, as described in Sec. 4.
Specifically, we analyze the constraints in Eqs. (10) and (11)
and the solution to the minimization problem in Eq. (12).

8.1. Null Space Conditions
The singular values of a matrix A ∈ Rm×n are defined as
the square roots of the eigenvalues of the symmetric matrix
A⊤A ∈ Rn×n. Alternatively, the singular vectors of A can
be defined as follows:

v1 = argmax
∥v∥2=1

∥Av∥2 , (15)

vi = argmax
∥v∥2=1

v⊥span{v1,...,vi−1}

∥Av∥2, i ≥ 2 . (16)

The singular values of A are then given by:

σi(A) = ∥Avi∥2 . (17)

The null space of A, denoted as Null(A), is defined as the
span of unit vectors whose corresponding singular values
are zero. From Eq. (16), there are n singular vectors (as
there are n orthogonal vectors in Rn). If r = rank(A), the
rank-nullity theorem implies that the nullity, i.e., the dimen-
sion of Null(A), is n−r. Therefore, from Eq. (16), the null
space of A is given by:

Null(A) = span{vr+1, ...,vn} . (18)

Moreover, if v1, . . . ,vr are the singular vectors corre-
sponding to the non-zero singular values of A, σ1(A) ≥
· · · ≥ σr(A) > 0 (assuming that A ̸= 0), then the span of
these vectors is orthogonal to the null space ofA. Formally:

Null(A)⊥ = span{v1, . . . ,vr} . (19)

Since v1, . . . ,vn are an orthonormal basis of Rn, and the
subspaces in Eqs. (18) and (19) are complementary, every
feature vector ν ∈ Rn can be written as:

ν = νn + νa , νn ∈ Null(A) , νa ∈ Null(A)⊥ . (20)

This decomposition indicates that every vector ν ∈ Rn con-
sists of a component νn in the null space of A and a com-
ponent νa orthogonal to Null(A). This makes the condition
δ ∈ Null(W⊤

cls)
⊥ in Eqs. (10) to (12) necessary to avoid a

trivial solution to the minimization problem. For instance,

if this condition were not enforced, then the solution would
be zero, corresponding to any δ ∈ Null(W⊤

cls). If we only
enforced δ /∈ Null(W⊤

cls), then the minimum would not
exist but the infimum would be zero:

inf
δ:∥δ∥≥db,

δ/∈Null(W⊤
cls)

∥W⊤
clsδ∥ = 0 . (21)

Eq. (21) holds because δ can be decomposed into compo-
nents δn ∈ Null(A) and δa ∈ Null(A)⊥, where δn can be
arbitrarily larger than δa, making ∥W⊤

clsδ∥ arbitrarily small
(but not zero).

8.2. Least Singular Value Solution

From Eqs. (16) and (19), it follows that:

min
∥v∥2=1

v∈Null(A)⊥

∥Av∥2 = σr(A) =: σmin(A). (22)

This equation highlights that the smallest non-zero singular
value of A corresponds to the minimum norm of Av over
all unit vectors orthogonal to Null(A).

The singular value decomposition (SVD) encodes infor-
mation about the singular values and singular vectors of
a given matrix in a structured way. Namely, any matrix
A ∈ Rm×n can be factorized as follows:

A = UΣV ⊤ , (23)

where:
• Σ ∈ Rm×n is a diagonal rectangular matrix whose entries

are the singular values of A in descending order;
• U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,

whose columns correspond to the left and right singular
vectors of A, respectively.

In particular, the SVD of A⊤ is given by:

A⊤ = V Σ⊤U⊤ , (24)

which implies that A and A⊤ have the same non-zero sin-
gular values. Combining this with Equation (22), we get

min
∥v∥2=1

v∈Null(A⊤)⊥

∥A⊤v∥2 = σmin(A) , (25)

which justifies Equation (12).



8.3. Singular Value Gradients
Lewis and Sendov [26] demonstrate that for a convex and
absolutely symmetric function f : R → (−∞,+∞], the
gradient of the corresponding function f ◦σ is differentiable
at the matrix X if and only if f is differentiable at σ(X),
where σ(X) are the singular values of X . The gradient is
given by:

∇(f ◦ σ)(X) = UDiag (∇f (σ (X)))V ⊤ , (26)

where X = UDiag (X)V ⊤. If (fi ◦ σ)(C) = s⊤i σ(X)
is a function that selects the i-th singular value, such
that (si)k = δik, where δik is the Kronecker delta, then
∇f (σ (X)) = si. Therefore, the gradient of the i-th singu-
lar value is:

∇σi(X) = uiv
⊤
i , (27)

where ui and vi are the left and right singular vectors cor-
responding to the i-th singular value σi(X). Furthermore,
if the singular values are ordered, then σmax = σ(X)1 and
σmin = σ(X)r, where r is the rank of X , hence:

∇σmin(X) = uminv
⊤
min (28)

∇σmax (X) = umaxv
⊤
max . (29)

Combining Eq. (28) into the LSV and CN regularizers
(Eqs. (13) and (14)), we obtain the gradients:

∇Wcls
(σ−1

min) = −σ−2
minuminv

⊤
min , (30)

∇Wcls
(κ) = (σminumaxv

⊤
max − σmaxuminv

⊤
min)/σ

2
min .

(31)

9. Training Regime
We follow the original training regime for each baseline
method and their corresponding FEVER-OOD variants.

VOS [7]: we train all our VOS for classification models
for 100 epochs with a batch size of 128 32 × 32 images
(CIFAR-10 and CIFAR-100 [20] datasets). Outlier synthe-
sis started in epoch 40 in all experiments. Following Du
et al. [7], we sample 10, 000 instances per category in the
feature space and choose the instance with the least log
probability as the outlier. We use an initial learning rate of
0.1 with cosine annealing and stochastic gradient descent
(SGD) with 5× 10−4 weight decay and 0.9 momentum for
all experiments. A loss weight of 0.1 is used for the un-
certainty loss. With regards to VOS for detection models,
we follow the same outlier synthesis scheme as in classifi-
cation. We use a batch size of 16 images with varying mini-
mum width from 480 to 800 pixels, and train for 18, 000 it-
erations, corresponding to around 17.4 epochs for the PAS-
CAL VOC [10] dataset. An initial learning rate of 0.02 is

used for all VOS detection models, decaying by a factor
of 10 after 12,000 epochs and again after 16,000 epochs.
Similarly to classification, loss weight of 0.1 us used for
the uncertainty loss. All VOS training was carried out us-
ing a single GPU per experiment. VOS classification mod-
els were trained on NVIDIA GeForce RTX 2080 Ti GPUs,
while VOS detection models were trained on NVIDIA RTX
A6000 GPUs.

FFS [21]: FFS models follow a similar training regime as
VOS models. The only difference for FFS models is that the
outliers are obtained as the least likely out of 200 samples
from the normalizing flow feature space, following Kumar
et al. [21]. We use the same 0.1 loss weight for the un-
certainty loss as in VOS, and 1 × 10−4 loss weight for the
normalizing flow loss, for both classification and detection
models. Additionally, we implement FFS for classification
since the original implementation is only for object classifi-
cation.

Dream-OOD [8]: we train Dream-OOD in CIFAR-100
for 100 epochs with a batch size of 160 in-distribution im-
ages and 160 OOD images (for a combined 320 epochs
per batch). We use SGD with an initial learning rate of
0.1, cosine annealing, 5 × 10−4 weight decay and 0.9 mo-
mentum. Regarding Imagenet-100, we use a ResNet-34
[14] that is pretrained solely on image classification only
for 100 epochs. We train for OOD detection for 20 fur-
ther epochs, using a batch size of 20 in-distribution and
20 OOD images, initial learning rate of 0.001, 5 × 10−4

weight decay and 0.9 momentum. Following Du et al. [8],
we use an energy loss weight of 2.5 for CIFAR-100 experi-
ments and 1.0 for Imagenet-100 experiments. Dream-OOD
for CIFAR-10 models were trained with single NVIDIA
GeForce RTX 2080 Ti GPU while the Imagenet-100 models
were trained with single NVIDIA TESLA v100 GPUs. We
use the ResNet-34 pretrained model for Imagenet-100 and
the generated outliers in the pixel space for both CIfAR-100
and Imagenet-100 provided by Du et al. [8] at https://
github.com/deeplearning-wisc/dream-ood.

10. Null Space Projection
Figs. 6 and 7 show the feature projections of VOS and
FEVER-OOD VOS models using UMAP and t-SNE pro-
jections, respectively. Both models are for CIFAR-10 as in-
distribution data, with the best model of FEVER-OOD VOS
being shown, corresponding to an 96-NSR and λLSV = 1.0
(Tab. 1). Specifically, Figs. 6a and 7a show the projec-
tion of in-distribution vs. OOD examples. The projections
of the feature space of both methods show that the OOD
samples are pushed to different regions outside, with de-
fined clusters for in-distribution classes (colored according
to their ground-truth class). Nonetheless, the free energy



(a) (b) (c)
Figure 6. Feature Space UMAP Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the
bottom shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where × markers represent
data from OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space
directions, the LSV direction and a random direction.

(a) (b) (c)
Figure 7. Feature Space t-SNE Projection for models trained on CIFAR-10. Top row corresponds to the VOS [7] model while the bottom
shows the FEVER-OOD VOS (Ours) projections. (a) In-distribution vs OOD feature space projection, where × markers represent data from
OOD datasets, (b) Free Energy visualization of the feature space, and (c) different important directions, including Null Space directions,
the LSV direction and a random direction.



(a) VOS (b) FEVER-VOS

Figure 8. Free energy change by its distance to the centroid of the feature vectors of an in-distribution category along different directions.
(a) VOS vs. (b) FEVER-OOD VOS.

(a) VOS (b) FEVER-VOS

Figure 9. Free energy change for varying the contribution of the Null Space (NS) component and the Null Space Perpendicular (NSP)
component. (a) VOS vs. (b) FEVER-OOD VOS.

score for these samples shown in Figs. 6b and 7b exhibits
a more uniform distribution of the free energy for OOD
samples when using FEVER-OOD, providing a visualiza-
tion of why our technique works better. Additionally, the
different scales of the energy values between both models
indicates a higher separability between in-distribution and
OOD. Finally, Figs. 6c and 7c show the feature distribution
of the class 0 and some virtually generated features along
some directions. Specifically, we generate features away
from the centroid of the in-distribution feature vectors along
three null space directions (gray), the LSV direction (green)
and a random direction (blue). As described in Sec. 4.1,

the energy of the features in the null space direction does
not change, which is reflected in Figs. 6c and 7c, where all
the null space features have the same energy. Additionally,
Sec. 4.2 shows that the direction with least change in energy
corresponds to the LSV direction. In this sense, because
our FEVER-OOD VOS (Figs. 6c and 7c) uses the LSVR,
the energy plots show greater energy variation in the LSV
direction (green line) compared to the baseline VOS.

Fig. 8 shows the change in energy across these directions
with respect to the distance to the in-distribution centre,
where it is seen that the change in energy in the LSV direc-
tion is significantly larger with FEVER-OOD. Finally, with



Table 5. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - - 50.05±5.70 86.79±1.28 39.15±10.52 91.73±2.88 40.88±1.75 89.54±0.69 8.22±1.02 98.36±0.20 30.01±4.44 94.31±0.84 33.66±2.21 92.15±0.59 94.83±0.16

- 1.0 - 55.58±6.35 86.71±2.35 43.00±3.16 92.09±0.94 38.78±2.51 91.14±0.56 7.36±1.59 98.46±0.32 21.23±6.95 96.23±1.17 33.19±3.20 92.92±0.85 94.66±0.18

- - 0.1 50.80±3.06 85.39±0.79 30.78±2.95 94.04±0.58 41.60±1.40 88.77±0.74 8.50±0.82 98.30±0.10 30.91±4.54 93.41±1.68 32.52±1.25 91.98±0.46 94.69±0.16

96 - - 50.27±2.32 89.42±0.49 36.25±14.04 93.93±2.00 39.51±1.68 91.42±0.52 6.98±0.91 98.63±0.18 22.95±7.32 96.02±1.32 31.19±3.21 93.89±0.47 94.69±0.16

96 1.0 - 40.86±4.83 92.12±1.05 41.92±16.11 93.20±2.61 35.69±2.29 92.61±0.57 4.95±1.49 98.93±0.24 17.68±5.26 97.04±0.85 28.22±4.18 94.78±0.85 94.74±0.17

96 - 0.1 43.60±3.32 90.86±0.71 48.71±11.23 91.99±1.95 38.47±1.36 91.34±0.54 5.90±1.66 98.76±0.26 18.27±5.40 96.81±0.83 30.99±3.47 93.95±0.56 94.65±0.12

64 - - 46.97±1.35 89.57±0.64 37.79±6.83 93.45±1.00 36.70±1.51 91.84±0.50 6.60±0.91 98.66±0.14 22.29±3.18 96.00±0.68 30.07±1.71 93.91±0.38 94.76±0.07

64 1.0 - 44.41±5.39 91.26±1.29 34.68±10.93 94.39±1.72 35.85±2.56 92.42±0.53 5.68±0.57 98.75±0.13 24.03±5.91 96.02±0.95 28.93±3.86 94.57±0.66 94.75±0.13

64 - 0.001 48.54±4.50 89.40±1.38 45.51±9.64 91.41±2.42 38.34±1.74 91.39±0.49 6.99±0.87 98.64±0.13 21.29±4.28 96.28±0.72 32.13±3.01 93.42±0.74 94.78±0.10

32 - - 43.89±3.14 90.66±0.81 50.86±10.43 91.48±1.74 37.95±0.95 91.73±0.43 5.60±0.74 98.84±0.12 24.57±6.02 95.55±1.33 32.57±2.09 93.65±0.60 94.75±0.14

32 0.001 - 46.53±3.77 89.67±1.09 27.84±9.47 95.29±1.08 37.33±1.63 91.77±0.39 5.65±0.77 98.82±0.11 24.09±6.77 95.68±1.35 28.29±3.33 94.25±0.55 94.68±0.07

32 - 0.1 48.25±5.47 89.32±1.39 25.31±2.15 95.71±0.41 39.49±2.75 91.23±0.83 7.09±1.37 98.63±0.24 26.50±7.71 95.00±2.19 29.33±1.29 93.98±0.44 94.84±0.17

10 - - 53.20±3.90 88.97±0.73 35.62±9.66 94.41±1.28 45.73±6.29 89.73±1.69 11.72±3.39 97.93±0.46 41.80±14.35 92.51±3.03 37.61±4.00 92.71±0.97 91.95±2.32

10 0.01 - 72.61±22.80 72.98±18.81 76.83±24.26 73.13±19.16 72.09±24.70 70.86±17.48 49.57±41.32 78.19±23.02 59.87±32.88 76.66±21.76 66.19±28.10 74.37±19.94 58.10±39.34

10 - 0.001 67.02±17.39 80.09±15.10 58.11±24.43 83.56±16.90 58.03±21.22 81.80±15.94 34.06±33.25 87.46±18.75 56.56±24.29 83.65±17.01 54.76±22.82 83.31±16.67 74.13±32.08

FFS - - - 52.86±4.49 83.47±1.67 38.67±11.21 89.74±5.19 44.65±1.29 87.47±0.77 6.59±0.92 98.67±0.17 31.34±1.88 93.24±0.97 34.82±2.03 90.52±0.98 94.69±0.15

- 0.001 50.74±3.98 84.93±0.75 32.25±12.16 92.97±3.60 42.99±2.30 88.30±1.10 5.76±1.23 98.82±0.27 28.16±6.45 94.18±1.98 31.98±3.10 91.84±1.28 94.73±0.12

- - 1.0 50.08±3.86 84.92±1.85 30.91±6.19 92.77±2.33 45.69±2.59 87.16±0.75 6.22±0.65 98.73±0.11 26.60±3.64 94.80±0.64 31.90±2.51 91.67±0.94 94.85±0.20

96 - - 48.67±2.88 88.70±0.48 40.64±19.36 89.89±9.15 41.38±1.20 90.22±0.88 4.84±0.81 99.02±0.13 27.30±6.08 94.99±1.18 32.57±4.52 92.56±2.03 94.71±0.13

96 1.0 - 48.11±5.15 89.84±1.51 40.65±15.47 93.32±3.16 36.37±2.28 92.29±0.60 5.22±1.35 98.89±0.18 24.84±10.08 95.82±1.68 31.04±5.05 94.03±1.06 94.71±0.08

96 - 0.001 47.24±2.61 89.51±0.88 39.25±10.20 93.84±1.33 40.44±3.32 90.83±0.97 4.44±0.81 99.08±0.12 25.27±6.08 95.71±0.98 31.33±3.13 93.80±0.60 94.84±0.14

64 - - 45.03±2.88 89.96±1.01 37.96±2.68 93.18±1.53 41.70±1.51 90.49±0.57 4.64±0.30 99.03±0.04 22.78±5.67 96.02±0.97 30.42±2.09 93.73±0.69 94.82±0.07

64 1.0 - 51.70±5.67 88.81±1.09 33.02±14.09 94.60±2.30 39.05±3.73 91.53±1.23 5.56±1.95 98.84±0.30 26.63±7.51 95.65±1.12 31.19±4.32 93.89±0.69 94.68±0.08

64 - 0.001 47.16±6.00 88.88±2.08 25.18±9.52 95.65±1.62 43.52±2.75 89.96±0.67 5.01±0.84 99.03±0.13 28.45±8.77 94.79±1.71 29.86±3.34 93.66±0.79 94.79±0.19

32 - - 46.75±3.49 89.61±1.40 31.77±8.73 94.44±1.35 41.51±3.38 90.72±1.02 4.93±1.11 99.04±0.16 28.92±11.23 94.49±2.94 30.78±3.70 93.66±0.95 94.79±0.18

32 0.001 - 49.79±3.05 88.29±0.93 31.60±16.07 94.14±3.53 41.25±1.84 90.58±0.70 5.00±1.28 98.99±0.19 28.24±6.75 95.06±1.22 31.18±5.21 93.41±1.03 94.74±0.17

32 - 0.01 51.83±5.63 87.07±1.91 33.13±6.68 94.35±1.40 46.81±2.95 88.85±1.02 5.37±1.64 98.95±0.28 31.78±8.93 94.56±1.52 33.78±3.89 92.75±1.01 94.70±0.19

10 - - 54.72±5.89 84.77±3.23 45.70±12.95 91.49±2.27 41.52±3.27 89.51±1.31 8.21±3.59 98.33±0.67 28.58±7.75 94.30±1.82 35.75±5.26 91.68±1.38 94.54±0.17

10 0.001 - 62.04±19.73 79.12±14.68 55.11±27.80 81.97±16.88 54.23±23.47 81.49±15.84 26.86±36.64 88.65±19.33 49.99±28.02 84.06±17.28 49.65±25.60 83.06±16.58 77.76±33.88

10 - 0.001 66.08±18.34 75.24±13.01 62.20±29.49 80.75±16.21 56.53±22.11 79.83±15.02 31.00±34.71 87.73±18.88 51.68±24.86 83.40±16.74 53.50±24.12 81.39±15.82 77.62±33.81

regards to the component decomposition in Eq. (20), Fig. 9
shows the energy change with respect to an in-distribution
feature vector when moving in directions with varying con-
tribution of the components of the null space and perpen-
dicular to the null space. Since the null space component
does not change the free energy score, all the changes are in
the vertical direction, showing a greater change when using
FEVER-OOD vs. the baseline methods.

11. Ablation Studies
Tabs. 5 to 7 show more extensive results of different com-
binations of NSR, LSVR and CNR in the FEVER-OOD
framework. The best values for λLSV and λCN are re-
ported. In general, it is observed that using LSVR improves
the detection of the baseline and NSR versions, while CNR
usually decreases the AUROC. It is also seen that NSR
also increases AUROC and decreases FPR95. Nonetheless,
excessive NSR in feature-outlier synthesis methods(e.g.,
VOS using 10-NSR for CIFAR-10) can negatively impact
OOD detection performance. On the other hand, Dream-
OOD models achieve better results with significant NSR,
although LSVR and CNR seem to only be beneficial for
Imagenet-100.

Figs. 10 to 14 show the ablation studies of varying λLSV
and λCN in Eqs. (13) and (14) for different classifica-
tion methods and in-distribution datasets. Fig. 10 shows
the results for FEVER-OOD VOS using CIFAR-10 as in-
distribution, where values corresponding to a λ{LSV ,CN} =
0 refer to no LSV or CN regularisation. In general, LSV
regularisation gives better results than CN regularisation. It

is observed that larger values of λLSV leads to better per-
formance for none or few NSR (VOS, VOS-96-NSR and
VOS-64-NSR). The same trend is observed for FEVER-
OOD FFS in Fig. 11. It is also observed that the mod-
els become unstable when using a large NSR, where the
extreme case of {VOS,FFS}-10-NSR fails for both regu-
larizer at relative small loss weights. This effect could be
caused because regualrizing the least singular value (either
for LSVR or CNR) affects all the directions of the feature
space since there is no null space. This causes makes the
model not able to learn the in-distribution task, failing also
for OOD detection. Additionally, all NSR models fail for
λCN = 1.0.

FEVER-OOD VOS and FFS ablations for the CIFAR-
100 as in-distribution are shown in Figs. 12 and 13. Similar
as with CIFAR-10, LSV regularisation is more stable and
leads to better results than CN regularisation. In both OOD
models (VOS and FFS), it is observed that the best results
are achieved with 114-NSR and an intermediate value for
λLSV . These results indicate that for OOD models based
in outlier generation in the feature space, some reduction
of the null space and a moderate regularizer is benefical.
However, the complete elimination of the null space and
LSV (or CN) regularization might impose a huge prior in
the last layer, making it difficult to learn the in-distribution
task. Finally, Fig. 14 shows the ablations for FEVER-OOD
Dream-OOD with CIFAR-100 as in-distribution. Here it
is observed that NSR by itself leads to better results, sug-
gesting that there might be a significant portion of gener-
ated outliers in with large components in the null space



Table 6. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

Textures SHVN Places365 LSUN iSUN AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

VOS - - - 81.24±2.11 76.01±0.80 76.09±6.51 83.18±3.59 80.53±1.46 76.25±0.78 37.86±4.06 93.21±0.68 79.34±1.60 76.43±1.44 71.01±1.23 81.02±0.40 76.04±0.22

- 0.1 - 82.87±1.11 76.49±0.94 73.35±2.96 84.57±1.53 80.36±1.16 76.89±0.79 40.05±3.74 92.83±0.46 74.28±4.03 80.25±3.34 70.18±0.87 82.21±0.56 76.01±0.16

- - 0.01 82.51±2.64 76.04±1.91 73.67±3.10 85.31±1.24 80.18±1.08 76.59±0.23 41.08±3.27 92.75±0.63 80.83±4.37 73.79±5.51 71.65±0.96 80.90±1.11 76.20±0.11

114 - - 80.63±0.96 79.06±1.06 81.92±7.49 83.25±4.14 80.23±0.69 77.02±0.34 28.61±1.69 95.20±0.31 76.87±6.24 79.18±3.79 69.65±2.94 82.74±1.65 75.40±0.31

114 0.01 - 80.02±2.75 78.73±1.83 83.45±2.59 82.07±1.36 78.41±0.96 77.71±0.93 28.90±3.61 95.11±0.58 72.07±9.07 80.55±4.70 68.57±2.28 82.83±0.91 75.72±0.16

114 - 0.001 79.37±1.87 79.19±1.03 86.96±1.93 79.25±2.15 78.20±0.48 77.91±0.40 26.05±2.38 95.70±0.34 72.95±4.35 81.12±2.45 68.71±1.18 82.63±0.83 75.44±0.20

100 - - 80.47±2.32 78.21±1.14 79.10±7.42 83.39±3.91 79.19±1.04 77.23±0.50 28.99±2.59 95.15±0.39 75.51±6.68 79.63±3.70 68.65±1.29 82.72±0.57 75.54±0.19

100 0.001 - 82.60±8.93 72.91±11.54 88.71±7.23 72.19±11.75 82.94±8.56 71.84±10.94 43.40±28.32 86.02±18.01 81.55±9.90 72.74±11.58 75.84±12.12 75.14±12.58 60.57±29.78

100 - - - - - - - - - - - - - - -
FFS - - - 82.87±1.39 75.54±0.93 76.32±6.17 84.83±2.36 81.14±1.09 76.27±0.74 36.27±4.91 93.54±1.03 82.83±2.98 74.29±3.08 71.89±1.64 80.89±1.11 76.04±0.11

- 0.01 - 80.95±1.34 76.53±0.70 83.12±5.59 81.61±2.92 80.19±0.84 76.58±0.49 32.93±4.05 94.20±0.51 79.05±5.16 77.28±3.23 71.25±2.11 81.24±0.72 76.27±0.28

- - 0.001 80.27±2.76 76.78±1.53 78.57±7.32 82.57±2.95 80.40±1.09 76.40±0.53 32.91±4.90 94.06±1.02 80.71±7.90 74.49±5.57 70.57±2.41 80.86±0.88 76.05±0.16

114 - - 80.99±1.36 78.17±0.83 83.70±7.11 80.78±5.09 80.24±0.79 77.02±0.45 25.36±2.40 95.73±0.40 76.10±6.85 79.87±3.14 69.28±1.95 82.31±1.27 75.60±0.23

114 0.001 - 79.26±2.67 78.16±1.50 74.28±7.13 85.37±3.20 79.45±0.85 77.25±0.61 24.10±1.42 95.94±0.17 73.61±5.82 80.61±2.49 66.14±1.91 83.47±0.98 75.45±0.37

114 - 0.001 81.77±1.81 76.87±1.76 82.61±7.99 78.78±6.21 80.14±1.05 77.08±0.82 26.15±1.91 95.52±0.27 75.69±7.73 78.84±3.69 69.27±1.69 81.42±0.96 75.14±0.25

100 - - 77.69±2.97 78.62±1.02 77.84±9.62 83.40±3.52 80.41±0.72 76.58±0.35 21.91±0.95 96.25±0.11 79.60±6.06 75.79±5.17 67.49±2.03 82.13±0.85 75.48±0.28

100 0.001 - 84.73±7.80 70.68±10.41 86.40±7.94 74.77±12.47 83.15±8.50 71.57±10.79 39.78±30.19 86.59±18.30 82.75±8.98 72.08±11.35 75.36±12.36 75.14±12.57 60.52±29.76

100 - - - - - - - - - - - - - - -
Dream-OOD - - - 62.20±1.02 83.84±0.38 73.05±1.92 84.56±0.21 77.95±1.97 79.43±0.17 39.90±2.01 92.87±0.44 1.70±0.11 99.58±0.04 50.96±1.44 88.06±0.60 75.61±0.19

- 0.01 - 58.45±2.27 86.04±0.41 68.75 ±1.84 87.65±0.30 77.45±2.11 78.59±0.22 15.45±2.57 97.24±0.09 1.55±0.03 99.63±0.45 44.33±3.48 89.83±0.12 75.87±0.23

- - 0.001 57.4±1.88 86.28±0.32 77.75±1.11 85.13±0.41 78.6±1.23 78.73±0.15 27.2±1.77 95.01±0.42 1.55±0.08 99.57±0.07 48.5±1.54 88.94±0.43 76.32±0.14

256 - - 60.00±3.21 85.42±0.79 67.50±2.47 85.84±0.66 75.90±1.10 79.57±0.43 19.85±1.05 96.74±0.67 1.00±0.02 99.78±0.06 44.85±2.72 89.47±0.242 77.01±0.12

256 0.001 - 54.25±2.13 86.18±0.86 82.60±2.24 81.70±0.91 71.20±1.33 81.23±0.61 23.45±1.31 95.87±0.41 1.05±0.02 99.69±0.05 46.51±0.99 88.93±0.14 76.40±0.30

256 - 1 60.05±2.56 84.52±0.11 61.75±2.03 88.30±0.40 78.15±2.72 76.60±0.82 34.80±1.09 93.18±0.39 1.50±0.14 99.69±0.10 47.25±1.65 88.46±0.68 77.49±0.15

128 - - 52.55±1.95 87.44±0.24 73.95±1.46 80.05±0.53 71.9±2.48 81.17±0.23 17.7±0.91 97.07±0.13 1.3±0.05 99.73±0.16 43.48±2.22 89.09±0.67 76.72±1.21

128 0.1 - 56.45±2.39 87.73±1.01 67.45±1.12 87.53±0.44 78.45±2.46 77.24±0.61 29.6±1.73 94.81±0.40 1.95±0.10 99.5±0.10 46.78±2.72 89.36±0.83 76.21±0.35

128 - 0.01 56.05±2.38 86.35±0.79 83.1±1.95 80.75±0.64 75.95±2.53 79.81±0.37 23.5±0.98 95.66±0.30 1.45±0.12 99.65±0.02 48.01±1.54 88.44±0.55 76.35±0.27

100 - - 57.55±2.48 86.8±0.44 54.45±3.02 88.69±0.59 75.8±1.21 78.88±0.69 24.45±1.57 95.86±0.52 1.6±0.07 99.65±0.21 42.77±2.10 89.98±0.15 76.41±0.32

100 0.001 - 82.6±4.73 62.38±2.23 90.9±3.33 60.9±1.52 84.4±3.72 69.39±2.27 67.05±1.30 72.8±1.90 5.8±0.85 97.81±0.49 66.15±1.79 72.66±1.17 31.76±4.15

100 - - - - - - - - - - - - - - -

Table 7. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Null Space Reduction (NSR) methods = our approach).

FEVER-OOD
OOD Datasets

iNaturalist Places365 SUN Textures AvgMethod
r-NSR λLSV λCN FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ID Acc

Dream-OOD - - - 23.98±2.08 95.94±0.26 41.75±1.72 92.48±0.12 40.85±1.13 92.76±0.09 50.73±0.85 86.21±0.29 39.33±1.08 91.84±0.12 87.76±0.19

- 0.01 - 59.91±3.09 90.89±0.48 66.26±2.17 88.12±0.47 74.26±1.52 84.53±0.33 60.56±1.21 83.91±0.42 65.25±1.50 86.87±0.25 87.85±0.11

- - 0.001 59.71±3.53 90.97±0.70 65.01±1.90 88.39±0.45 73.93±1.58 84.69±0.49 60.51±1.46 84.01±0.51 64.79±1.69 87.01±0.45 87.77±0.13

256 - - 23.84±1.73 95.80±0.30 44.35±1.71 92.14±0.30 42.92±1.98 92.46±0.33 44.38±1.81 88.60±0.54 38.87±1.29 92.25±0.23 87.57±0.24

256 0.01 - 24.02±1.48 95.75±0.26 44.09±1.87 92.02±0.27 43.36±1.53 92.30±0.30 44.55±1.38 88.67±0.39 39.00±1.05 92.18±0.24 87.54±0.24

256 - 0.001 24.42±1.43 95.73±0.30 44.98±2.24 91.98±0.36 43.88±1.63 92.21±0.27 44.76±1.16 88.62±0.57 39.51±0.72 92.13±0.18 87.63±0.18

128 - - 23.96±2.93 95.91±0.38 43.73±2.50 92.25±0.33 43.44±2.69 92.39±0.41 42.38±1.64 89.40±0.33 38.38±2.21 92.49±0.24 87.53±0.12

128 0.01 - 23.46±2.54 95.93±0.36 43.37±1.47 92.19±0.22 42.42±1.60 92.44±0.29 41.86±1.09 89.48±0.27 37.78±1.45 92.51±0.22 87.60±0.11

128 - 0.001 24.55±2.47 95.87±0.30 44.12±2.03 92.20±0.26 43.89±2.21 92.40±0.33 42.53±1.38 89.48±0.40 38.77±1.76 92.49±0.23 87.49±0.11

100 - - 23.13±1.35 96.00±0.21 42.49±2.30 92.37±0.37 41.62±2.37 92.69±0.31 41.88±1.11 89.34±0.23 37.28±1.40 92.60±0.18 87.44±0.07

100 0.01 - 22.24±0.81 96.16±0.14 41.08±3.03 92.59±0.44 40.39±2.84 92.91±0.40 42.31±0.97 89.30±0.37 36.50±1.67 92.74±0.21 87.42±0.15

100 - 0.001 23.26±1.71 96.03±0.26 43.09±2.48 92.40±0.29 41.91±3.05 92.71±0.40 43.49±0.58 89.13±0.42 37.94±1.51 92.57±0.17 87.58±0.11

of the feature space. Dream-OOD follows a similar pat-
ter as the other models for CIFAR-100, suggesting that the
analysis holds for different OOD approaches. As shown in
Tabs. 8 to 10, our energy-based method consistently outper-
forms non-energy-based approaches on most OOD datasets,
achieving a lower FPR and a higher AUROC.

12. Qualitative Results
Additional qualitative examples for object-level OOD de-
tection using VOS [7] and FFS [21] models trained with
and without FEVER-OOD with PASCAL VOC as in-
distribution are shown in Fig. 15 for OpenImages [22] as
OOD, and in Fig. 16 fos MS-COCO [28] as OOD.

13. Limitations and Potential Negative Impact
This section discusses some limitations and potential nega-
tive impact of FEVER-OOD, identifying the following:
• FEVER-OOD does not entirely avoid the null space vul-

nerabilities. While we reduce the size of it, there might
be some anomalies with large components in the feature
space.

• Careful fine tuning is needed in some instances, specially
when reducing the null space significantly. We did not
identify any condition to estimate the regularizer weight
a priori.

• While our analysis show a large change in Energy for
far anomalies (OOD samples), we did not test the per-
formance of FEVER-OOD in this cases.

Finally, our work might have some potential negative im-
pact. For instance, the exploration of these vulnerabilities
might allow for tailored generated outliers that fool (in an
adversarial sense) models based on free energy OOD detec-
tion. Additionally, we trained several models with different
in-distribution datasets to perform the ablation studies, hav-
ing a negative environmental effect due to the large power
consumption for GPU training for such extensive studies.



(a) VOS (b) VOS-96-NSR (c) VOS-64-NSR (d) VOS-32-NSR (e) VOS-10-NSR

Figure 10. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-10 as in-distribution (ID).

(a) FFS (b) FFS-96-NSR (c) FFS-64-NSR (d) FFS-32-NSR (e) FFS-10-NSR

Figure 11. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-10 as in-distribution (ID).

(a) VOS (b) VOS-114-NSR (c) VOS-100-NSR

Figure 12. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for VOS, using CIFAR-100 as in-distribution (ID).

(a) FFS (b) FFS-114-NSR (c) FFS-100-NSR

Figure 13. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for FFS, using CIFAR-100 as in-distribution (ID).

(a) Dream-OOD (b) Dream-OOD-256-NSR (c) Dream-OOD-128-NSR (d) Dream-OOD-100-NSR

Figure 14. Ablations of the loss weight for the LSVR and CNR in FEVER-OOD for Dream-OOD, using CIFAR-100 as in-distribution
(ID).



Table 8. CIFAR-10 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

Texture SVHN Place365 LSUN iSUN Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 24.35 95.20 24.95 95.36 44.70 90.71 18.80 96.63 29.25 95.10 28.41 94.60 94.21
ODIN [27] 56.40 86.21 20.93 95.55 63.04 86.57 7.26 98.53 33.17 94.65 36.16 92.30 94.21
Softmax [15] 66.45 88.50 59.66 91.25 62.46 88.64 45.21 93.80 54.57 92.12 57.67 90.86 94.21
GradNorm[17] 71.66 80.79 80.86 81.41 80.71 72.57 53.87 88.39 60.32 88.00 69.49 82.23 94.21
KNN [38] 27.57 94.71 24.53 95.96 50.90 89.14 25.29 95.69 25.55 95.26 30.77 94.15 94.21
NPOS [39] 8.39 94.67 5.61 97.64 18.57 91.35 4.08 97.52 14.13 94.92 10.16 95.22 93.86

Table 9. CIFAR-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

Texture SVHN Place365 LSUN iSUN Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 86.00 71.95 54.30 88.85 84.70 74.64 57.15 88.17 56.65 87.13 67.76 82.15 73.12
ODIN [27] 85.75 73.17 89.50 76.13 41.50 91.60 74.70 83.93 90.20 68.27 76.33 78.62 73.12
Softmax [15] 86.45 71.32 85.30 72.41 73.40 81.09 85.55 74.00 88.55 68.59 83.85 73.48 73.12
GradNorm[17] 96.20 52.17 91.05 67.13 55.72 86.09 97.80 44.21 89.71 58.23 86.10 61.57 73.12
KNN [38] 88.00 67.19 66.38 83.76 79.17 71.91 70.96 83.71 77.83 78.85 76.47 77.08 73.12
NPOS [39] 33.07 92.86 17.98 96.43 80.41 73.74 28.90 92.99 43.50 89.56 40.77 89.12 73.78

Table 10. ImageNet-100 Results (ID Acc. = in-distribution accuracy; Non-energy based methods).

Non-energy
based method

OOD Datasets

iNaturalist Place365 SUN Textures Avg
ID Acc

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViM [41] 72.40 84.88 76.20 81.54 73.80 83.99 22.20 95.63 61.15 86.51 84.16
ODIN [27] 53.00 89.52 70.40 82.77 66.90 85.01 48.40 89.19 59.67 86.62 84.16
Softmax [15] 76.30 82.20 81.90 77.54 82.70 78.35 75.30 80.01 79.05 79.52 84.16
GradNorm[17] 50.82 84.86 68.27 74.46 65.77 77.11 40.48 88.17 56.33 81.15 84.16
KNN [38] 56.96 86.98 64.54 83.68 63.04 85.37 15.83 96.24 50.09 88.07 84.16
NPOS [39] 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37



(a) (b)

Figure 15. Additional visualization of detected objects on the OOD images (from OpenImages [22]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD
objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).



(a) (b)

Figure 16. Additional visualization of detected objects on the OOD images (from MS-COCO [28]) by free energy-based OOD (VOS)
[7], free energy-based OOD (FFS) [21] and FEVER-OOD (our approach). The in-distribution is PASCAL VOC [10] dataset. Blue: OOD
objects detected and mis-classified as being in-distribution. Green: the same OOD objects correctly detected as OOD by FEVER-OOD
(ours).


