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ABSTRACT

3D Computed Tomography (CT) image segmentation
is already well established tool in medical research and
in routine daily clinical practice. However, such tech-
niques have not been used in the context of 3D CT
image segmentation for baggage and package security
screening using CT imagery. CT systems are increas-
ingly used in airports for security baggage examination.
We propose in this contribution an investigation of the
current 3D CT medical image segmentation methods
for use in this new domain. Experimental results of 3D
segmentation on real CT baggage security imagery us-
ing a range of techniques are presented and discussed.

1. INTRODUCTION

In recent times, aviation security has received signifi-
cant attention worldwide. Security screening technolo-
gies such as CT systems are becoming increasingly used
for baggage examination to detect potential threats [1].

Currently screening is a manual inspection process
based on human interpretation of 2D X-ray (or 3D CT
density) images. This process is tedious and subject to
operator’s skill and training [1]. Also the image in-
terpretation process itself is difficult task in the case
of cluttered baggage with overlapping objects. This is
clearly exemplified in Figure 1 which displays 2D X-
ray and 3D CT images of the same cluttered baggage.
In this case the detection of a threat object occluded
by other objects by a simple visual inspection of the
baggage imagery is difficult. It is therefore desirable
to provide a functionality that allows the operator to
specify objects of interest for examination and to sep-
arate them out to view them individually. Displaying
and manipulating the object in 3D allows the opera-
tor to access information which is not available in a
2D X-ray image and provides better viewing and in-
terpretation than traditional 2D inspection techniques.
Such functionality can be achieved by integrating 3D
object segmentation techniques into this visual inspec-
tion process. Furthermore segmentation for object iso-
lation within manual baggage imagery interpretation is
complemented by recent advances in automatic object
classification within the screening process using both
3D CT [2–6] and 2D X-ray imagery [7, 8].
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Figure 1. (a) 2D X-ray and (b) 3D CT images of the same
cluttered baggage.

Such functionality has the advantage that it reduces
the amount of visual data that needs to be analysed
and focuses analysis on suspicious objects found in the
baggage. Also it allows consistency, minimizes subjec-
tivity and most importantly improves reliability and
efficiency of the overall process [1].

From the literature, no previous work has been done
on the the evaluation of medical 3D CT segmentation
into the baggage inspection process [9–19] with only
limited prior work addressing the security screening
context but using medical quality CT imagery [20, 21].
By contrast the use of such techniques in the domain of
medical imaging [22] is well established both in the field
of exploratory medical research and in routine daily
clinical practice. In this paper we present a novel work
which aims to investigate the effective use of 3D CT
medical image segmentation techniques and how they
can be applied to the task of automating the existing
manual CT baggage inspection processes [1] and con-
tributing to future screening automation [2, 3, 8] .

2. CT IMAGE SEGMENTATION
OVERVIEW

Medical image segmentation plays an important role
in biomedical imaging. It has numerous applica-
tions such as study of anatomical structures, diagnosis
and localization of pathology, treatment planning, and
computer-guided surgery [22].



Classically, image segmentation is defined as the pro-
cess of partitioning an image into non overlapping re-
gions that are homogeneous according to one or several
characteristics such as intensity and texture patterns.
In medical imaging applications, image segmentation
refers to the process of separation and delineation of an
anatomical structure so that it can be viewed individ-
ually for further examination [22].

A wide variety of techniques are available for medi-
cal image segmentation [22–24]. These vary depending
on the specific application, imaging modality used for
gathering data (e.g. CT, MRI), and the anatomical
structures reputed to be segmented. These methods
can be broadly classified into two categories, namely
(a) region-based methods which perform the segmen-
tation by finding coherent regions according to some
criteria [25–31], and (b) boundary-based methods that
find the boundaries of the object of interest [32–40].

Region-based segmentation approaches include many
variants of the region growing method [25–30] and a
fuzzy connectedness segmentation method [31].

Boundary-based segmentation approaches range
from the earliest and simplest threshold-based tech-
niques [28, 41, 42] to the more sophisticated model-
based techniques such as active contours [32, 33] and
level sets [34–38] based on local gradients. The water-
shed segmentation method [39, 40] can also be consid-
ered under this category since it uses the boundary edge
of the object of interest.

As the number of available segmentation algorithms
in each category is very high, we have selected the
most prominent methods to apply to our new problem
domain. Notably, threshold-based techniques are not
suitable in our application for two reasons. The first
is the lack of homogeneity in CT density values within
the same object due to object complexity. For instance
an Improvised Explosive Device (IED) can have several
CT density values corresponding to its different compo-
nents. This is dissimilar to medical CT imagery where
the anatomical structures to be segmented commonly
have uniform CT density. The second reason is that ob-
jects of interest will commonly be surrounded by large
number of diverse objects of different CT density value
which leads to have a poor contrast against the back-
ground.

In addition as some objects, such as weapons, have
regions of high curvature, level set methods using cur-
vature term can not be readily used for this application
as they are generally unsuitable for segmenting objects
with high curvatures [34, 35]. Furthermore, unlike in
medical imaging applications, no prior knowledge about

the shape and intensity of an object being segmented
is available. As a result we exclude several methods
that make use of intensity prior knowledge such those
simplistic methods using an intensity range to perform
the segmentation (connected threshold, neighbourhood
connected, and isolated connected region growing meth-
ods) [43]. Methods based on shape prior knowledge
(e.g. [36]) are also not used in this work.

Consequently, the four methods considered for evalu-
ation in this work based on their suitability to the prob-
lem domain, are confidence connected region growing
method [43] and fuzzy connectedness method [31] for
region-based methods. For boundary-based approaches
we have chosen the fast marching method [37] as level
set method and the watershed method [39, 40].

2.1 Confidence Connected Region Growing

Region growing segmentation techniques start the seg-
mentation by defining a seed region (one or more voxels)
placed inside the object of interest. Neighbouring vox-
els are then evaluated against a predefined homogeneity
criterion, e.g. intensity, color, and texture. Voxels that
satisfy the criterion are added to the region. This pro-
cess is repeated until the whole volume is covered lead-
ing the region to grow from the given seed region. The
resulting connected voxels in the volume represent the
object of interest. The confidence connected method is
a simplest implementation of region growing segmenta-
tion approaches in which the homogeneity criterion is a
function of CT density values statistics (e.g. mean and
standard deviation) of the object of interest [43].

2.2 Fuzzy Connectedness

As in the previous segmentation method, this method
looks for uniformity within a sub-region, based on a de-
sired property. The later is represented by a fuzzy affin-
ity measure which computes the strength of connected-
ness between any pair of voxels in the volume [31]. This
measure is a function of the degree of the adjacency of
the considered voxels and the similarity of their CT
density values. The greater the spatial proximity and
the similarity CT density, the greater the affinity map
between given voxels [31].

2.3 Watershed

The watershed method is based on the topography con-
cept of watersheds and catchment basins [39, 40]. If
we flood a surface with waters form minimal altitudes
(minima) such that we avoid the merging of waters com-
ing from the different minima, the surface will be sep-
arated into catchment basins and watershed lines. By



analogy to this process, the gradient image of the CT
volume is interpreted as a topographic map where the
CT levels at each point describe altitudes. Catchment
basins correspond to the homogeneous sub-regions in
the volume and the watershed lines correspond to the
edges. The key advantage of watershed method is that
it is automatic where no seed points are needed to per-
form the segmentation. In addition it always produces
closed contours. This method is notably very sensitive
to noise which can result in over-segmentation of the
volume.

2.4 Fast Marching

The Fast Marching method works by propagating a
front from an initial seed region. The evolution of this
front results from applying a general speed function to
the initial seed region. Usually the speed function is an
edge-attracting function which is constructed so that it
moves quickly in homogeneous areas when the gradi-
ent is low and stops in region edge when the gradient
is high. The Fast Marching method is a type of level
set method which is designed for problems in which the
sign of the speed function is preserved (always positive
or negative) so that the front always moves outward or
inward. Since the speed function never changes sign,
the location of the propagating front, hence the bound-
ary of the region to be segmented is computed as the
arrival time of the front as it crosses the voxels in the
volume. This time is a function of the distance from the
initial seed region and the speed function which repre-
sent the resistance against the front as it progresses
through the volume [37].

3. EXPERIMENTS AND RESULTS

In this section we present the results of the four pre-
vious approaches for 3D CT segmentation on baggage
security CT imagery. The data was gathered using a
Reveal CT-80 baggage scanner with voxel resolution
1.5mm x 1.6mm x 16mm (x,y,z).

Figure 2 displays two samples of our data. In the top,
the 2D X-ray images are presented. In the bottom, we
show the rendered volumes of the same two samples.
The first sample (Figure 2 left) is a baggage which con-
tains among other objects a bottle of water. The other
sample has a gun placed in the baggage containing other
different objects. In the following discussion, we will
refer to these two samples as bottle baggage and gun
baggage respectively.

In our experiment we are interested to segment the
bottle and the gun as examples of simple and complex
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Figure 2. 2D X-ray image and CT volume of (a) bottle bag-
gage and (b) gun baggage.

items of interest. Within current security concerns, bot-
tles represent interesting target objects to examine in
any baggage screening process.

Before applying any of the selected segmentation
methods, the baggage security CT volumes are prepro-
cessed to filter out basic image noise. To this end, a
non-linear anisotropic diffusion smoothing filter is used
[44]. This filter has the advantage of both preserving
the edge structures and smoothing noise within the CT
volume. The imagery suffers from a range of noise
sources, notably caused by metal artefacts in the CT
process which are themselves the subject of separate
investigation [45–48].

In Figure 3 we show the results of applying confi-
dence connected, fuzzy connectedness and fast march-
ing methods on the bottle baggage. In Figure 4 we
present different watershed segmentation results gen-
erated by varying the threshold and the water level
parameters. The meaning of these parameters can
be found in [43]. As the ground truth segmentation
for baggage security imagery is difficult to obtain, the
four methods are compared qualitatively with respect
to their subjective results. This is a valid measure of
evaluation based on the fact that human operators will
ultimately view such imagery.



As can be seen from Figure 3 and 4 all methods lead
to good segmentation results. The bottle is segmented
and separated successfully with confidence connected-
ness, fuzzy connectedness and fast marching methods.
By analysing the slices of the segmented bottle, as de-
picted in Figure 5, one can remark that the region ex-
tracted with the confidence connected method has holes
inside (Figure 5a). This is a common behaviour of re-
gion growing segmentation methods. In some situations
the extracted regions are disconnected. The region ex-
tracted with the fuzzy connectedness is smooth com-
pared to the previous segmentation, as can be seen in
the border of the extracted region, and has fewer holes
(Figure 5b). The fast marching method produces, as
by definition, a connected region (Figure 5c).

The results obtained with the watershed method de-
pend on the parameter tuning, image details (amount of
edges) and the amount of noise present in the volume
(Figure 4). Unlike the other methods, the watershed
method operates on the whole volume and produces a
total partition of the imagery which results in segment-
ing all objects contained in the volume. Tuning the
parameters of this method to produce a segmentation
of all objects without leading to an over-segmentation
or merging together close regions is a difficult and te-
dious task.

The segmentation results of these methods can be
improved by applying a post-processing step. For in-
stance, in the case of confidence connected segmenta-
tion(Figure 3a), a morphology dilation filter can be
used to close the holes inside the segmented object.

In Figure 6 we show the results of the gun segmen-
tation using the four methods. The confidence con-
nected and the fuzzy connectedness methods perform
well (Figure 6 a,b). With few seed points, the gun has
been segmented and the same remarks as for the results
of these two methods on the bottle hold for this exam-
ple also. As for the bottle, the results of applying the
watershed method also depend on parameters tuning
and image details (Figure 6d).

As Figure 6c reveals, the fast marching method failed
on the gun. This is due to the fact that there is not
enough area where the required marching front can
evolve from the initial seed points toward the edges of
the gun. This problem is caused by two factors: the size
of the edges which is comparable to the size of the gun
(as depicted in Figure 7), and the slice thickness (spac-
ing between adjacent CT slices) in the z direction: In
our work, the CT scanner used has a z slice thickness of
16 mm compared to 1.5 mm (or finer) in medical appli-
cations. Such resolution prevents us segmenting small

Figure 7. An axial slice of the gun baggage gradient image.

and thin objects such as batteries and knifes.

4. CONCLUSION
In this contribution, we attempt to answer the question
how suitable are current medical based 3D CT segmen-
tation techniques for application to baggage security
CT imagery. Experiments show that the current 3D
CT medical image segmentation methods can be suc-
cessfully applied to the CT security screening problem
domain but that the results are significantly limited
by the presence of noise, the complexity of the tar-
get imagery within this context and the lack of prior
domain knowledge that underpins a range of leading
medical domain approaches. In particular, we conclude
that region-based segmentation methods perform bet-
ter than boundary-based region methods especially for
small objects.

The problem domain chosen is challenging compared
to medical imaging applications. In our experiment,
the parameters of the segmentation methods have to be
tuned for each object we are interested in segmenting
and also for each baggage item. In other words, a set
of parameters working for an object placed in a given
baggage item may not work for the same object placed
in another baggage item. This is because the object
will be surrounded by different contextual objects each
time it is placed in a different bag. In medical applica-
tions, such problem does not occur since the location
(the background) of the anatomical structure to be seg-
mented is known a priori. In addition, no prior knowl-
edge about the shape and intensity is available unlike
medical equivalent. Furthermore, threat objects lack
for CT density homogeneity unlike anatomical struc-
tures in medical applications.

Overall, the application of medical CT segmentation
to CT security screening shows promise but key differ-
ences in the subject of the imagery results in new chal-
lenges unforeseen in prior medical work. Our evaluation
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Figure 3. 3D bottle segmentation: (a) confidence connected, (b) fuzzy connectedness, (c) fast marching

(a) (b) (c)

Figure 4. 3D watershed segmentation of the bottle for various parameters (a) threshold= 0.001 and water level=0.05 (b)
threshold= 0.01 and water level=0.05, (c) threshold= 0.01 and water level=0.15. Top are the rendered volumes, bottom
are axial slices.

(a) (b) (c)

Figure 5. Axial slices of the segmented bottle using: (a) confidence connected (b) fuzzy conectdness and (c) fast marching
methods.
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(c) (d)

Figure 6. 3D gun segmentation: (a) confidence connected, (b) fuzzy connectedness, (c) fast marching, (d) watershed.

here will form the basis for future work in automated
object extraction for automated threat/non threat clas-
sification for security screening [2, 4–6].

This project was funded under the Innovative Research
Call in Explosives and Weapons Detection 2007 & 2010 ini-
tiative. This is a Cross-Government programme sponsored
by a number of Departments and Agencies under the UK
Government’s CONTEST strategy in partnership with the
US Department of Homeland Security.
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