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ABSTRACT

This paper presents an extension to a recent intensity-limiting sino-
gram completion-based Metal Artefact Reduction (MAR) algorithm
for Computed Tomography (CT) images containing multiple metal
objects. A novel weighting scheme is introduced, whereby the in-
tensities of the MAR-corrected pixels are modified based on their
spatial locations relative to the metal objects. Pixels falling within
the straight-line regions connecting multiple metal objects are sub-
jected to less intensive intensity-limiting, thereby compensating for
the characteristic dark bands occurring in these regions. Extensive
experimentation is performed on a state-of-the-art numerical simula-
tion, a clinical CT data set and a baggage security CT data set. Com-
prehensive performance analysis, using reference and reference-free
error metrics, Bland-Altman plots and visual comparisons, demon-
strate an improvement in the restoration of the underestimated inten-
sities occurring in the regions connecting multiple metal objects.

Index Terms— metal artefact reduction, CT, baggage CT

1. INTRODUCTION

Metal artefacts can corrupt X-ray Computed Tomography (CT) im-
ages so severely that they become extremely challenging to interpret
and of limited usability (see Fig. 1). In X-ray CT, the most widely
implemented reconstruction technique, in both clinical and industrial
practices, is the Filtered Back-Projection (FBP) algorithm. The FBP
algorithm is based on an analytical inversion of the Radon transform
[1] and yields fast and accurate reconstructions from ideal (or near-
ideal) projections, which contain a sufficient number of projection
samples and low degrees of noise, beam hardening and any other
imperfections [2]. In the presence of high-density objects, such as
metals, however, the effects of beam hardening, scattered radiation,
photon starvation, noise and the partial volume effect cause the FBP
algorithm to produce reconstructions characterised by dark shadows
and intense streaks, making the interpretation of the regions connect-
ing and surrounding the metal objects challenging [3].

Several Metal Artefact Reduction (MAR) techniques exist.
The majority of these techniques fall into one of three categories:
sinogram (or projection) completion methods; iterative methods
and hybrid methods. Sinogram completion-based approaches con-
sider the projections going through the metal objects as corrupted
and replace the corresponding projection data using interpolation
techniques (e.g. linear [4] or spline [5] interpolation). The cor-
rected sinograms are reconstructed via FBP, yielding images with
reduced streaking. Such techniques are generally straightforward
to implement and involve minimal computational overhead, mak-
ing them a popular choice. Iterative reconstruction methods allow
for the introduction of prior information and statistical models to
more accurately model the acquisition process. Iterative methods
generally yield superior reconstructions compared to Filtered Back
Projection, especially in the presence of incomplete and/or corrupted
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projection data. Despite the development of optimised approaches
[6, 7, 8, 9, 10, 11, 12], high computational cost remains the major
factor preventing the universal implementation of such techniques
in commercial CT machines.

Direct interpolation-based sinogram completion approaches
generally perform adequately when only a single, small metal object
is present in the Field-of-View (FoV). Muller and Buzug [13] have
demonstrated that the biggest disadvantage of sinogram correction
by direct interpolation is that all edge information (i.e. not just metal
object edges) lying on the beams passing through the metal objects
is lost. Sinogram correction by this so-called ‘naive interpolation’
ultimately leads to the generation of secondary streaks in the cor-
rected images [3, 13]. Furthermore, in the presence of multiple metal
objects, dark bands often appear between pairs of metal objects due
to unequal quantities of beam hardening across views [14].

Several MAR techniques have been proposed to better preserve
edge and contrast information, thereby reducing the generation of
secondary artefacts when dealing with images containing multiple
metal objects. Pre- and post-filtering techniques [15, 16], feedback
strategies [17], guided sinogram completion techniques based on
priors obtained via multiclass segmentation [13, 18, 19, 20, 21],
wavelet techniques [22, 23], Fourier-based interpolation [24] and
region-specific interpolation [15, 16] have been proposed and met
with varying degrees of success. With the exception of [16], these
methods are all intended for use in the medical field. In the medi-
cal domain, prior information regarding the contents (i.e. anatomical
composition) and nature (e.g. attenuation profiles) of the CT scans is
available. This prior information allows for effective parameter tun-
ing and can be used to ‘guide’ the interpolation process [3]. Those
MAR techniques that rely on effective parameter tuning and/or prior
information [13, 18, 19, 20, 21, 22, 23] are however, expected to be
of limited value in the security screening domain, where the contents
of the scans are inherently unpredictable making the generation of
prior information and effective parameter tuning more challenging.

We recently proposed a novel, yet efficient, interpolation-based
MAR approach for the reduction of metal artefacts in CT baggage
security imagery [16]. The method yielded a performance improve-
ment when compared to algorithms based on linear interpolation [4]
and reprojection-reconstruction [15] and has been shown to perform
comparably to state-of-the-art MAR methods in extensive experi-
mentation [25]. The approach however, performs poorly in image
regions corrupted by dark bands: a phenomenon which typically oc-
curs in the regions connecting multiple metal objects. In this study,
we propose a modification to our earlier work and demonstrate an
improvement in performance for both medical and baggage CT im-
agery.

2. PROPOSED ALGORITHM

Mouton et al. [16] presented a MAR technique for CT baggage im-
agery composed of the following steps:

1. Metal segmentation: Metallic objects present in the original
reconstructed image are segmented by binary thresholding, yielding
a ‘metal-only’ image. A ‘metal-free’ image is then constructed by
assigning a constant pixel value to the metallic regions in the orig-
inal, reconstructed image. The metal-free image is filtered with the



Fig. 1. (a) Volumetric baggage CT scan. (b) 2D axial slice from volume in
(a) displaying streaking artefacts.

edge preserving Non-Local Means (NLM) filter [26] to reduce weak
streaking artefacts and background noise while preserving the non-
metallic regions of the image.

2. Reprojection and sinogram completion: The metal-only
image and the filtered, metal-free image are forward projected us-
ing the Radon transform [27], yielding the corresponding sinograms.
The metal-only sinogram is used to index the bins in the metal-free
sinogram that are to be replaced by spline-interpolation.

3. Image reconstruction: The interpolated sinogram is recon-
structed via Filtered Back-Projection (FBP) [27] to obtain the cor-
rected, metal-free image. The metal objects are then reinserted into
the interpolated image, yielding the corrected image.

4. Image refinement: The pixel values in the corrected image
are limited to be less than or equal to the corresponding pixels in the
original image to remove the secondary streaking resulting from the
interpolation process. To eliminate the remaining weak streaks, the
image is again filtered with the NLM filter [26].

The image refinement step is motivated by the fact that the sec-
ondary streaks introduced by the interpolation procedure generally
manifest as intense, bright lines affecting the entire image. Regions
previously unaffected by streaking, but exhibiting secondary streaks,
are thus characterised by higher pixel values (see yellow regions in
FBP and Kalender images Figs. 4 and 5). By imposing an upper
limit on the corrected pixel values, much of the secondary streaking
is eliminated. Further experimentation [25] however, has revealed a
limitation in this reasoning. In images containing multiple metallic
objects, a common manifestation of unequal beam-hardening across
views [3], is the appearance of dark bands (underestimated attenua-
tion values) in the straight-line regions connecting the metal objects
(see Fig. 2). While the sinogram completion approach generally
yields adequate correction of such regions, this correction is undone
by the image refinement step in [16]. Considering that the approach
in [16] was developed for use in the security CT domain, it is likely
that this limitation was overlooked due to the typically high dynamic
range of security CT images [28, 29]. Such high dynamic ranges re-
sult in naturally dark background regions [16, 30, 31], thereby mak-
ing dark bands inherently less prominent. Applying the technique
to medical CT imagery, where windowing is used to improve the
visibility of low-density anatomy, has emphasised this shortcoming
[25].

To address this limitation, we replace the aforementioned re-
finement technique with a distance-weighted refinement procedure,
whereby the degree of intensity limiting is dependent on the loca-
tion of the pixels relative to the metal objects. Particularly, pixels
falling within the straight-line regions connecting two metal objects
are subjected to less intensive intensity refinement. For every pair
of metal objects, a set of ‘refinement weights’ are computed in the
following way (illustrated in Fig. 2):

1) The centroid of each metal object is determined (red ‘x’ in
Fig. 2). 2) For the smaller of the two metal objects (Metal 1 in
Fig. 2), an ellipse having the same second-moments as the metal
object is determined. 3) The angle that the line passing through the
centroids makes with the horizontal is computed and compared to
the angles that the major and minor axes of the ellipse make with the
horizontal. 4) The width of the weight-mask is set to the length of the

Fig. 2. (a) Illustration of the weighted mask generation. The intensity re-
finement of pixel pij is dependent on the distance to the nearest metal object.
The width of the mask is equal to the width of the ellipse surrounding the
smaller of the two objects (Metal 1). (b) Example input image (c) Multiple
metal objects (d) Resulting weighted mask.

ellipse axis which is nearest in orientation to the line connecting the
centroids. 5) The weights (in the range [0, 1]) are computed based
on the Euclidean distance from the mask pixel to the nearest of the
two metal objects such that pixels nearer to metal objects have higher
weights. For a pixel p = (pi, pj) in the mask located at (i, j) on a
rectangular image grid, the corresponding weightw(ij) is computed
as follows:

w(i, j) =
|D(i, j)−Dmax|

Dmax
(1)

D(i, j) = min {D(p, L1), D(p, L2)} (2)

where D(p, L) is the perpendicular Euclidean distance between the
pixel p at image location (i, j) and the straight line L; L1,2 are the
straight lines passing through the centroids of the two metal objects,
perpendicular to the line connecting the two centroids; Dmax is the
distance by which the mask extends beyond each metal object and
is a tunable parameter (see Fig. 2). For every pixel outside of the
mask, w(i, j) is set to zero. 6) For a pixel p = (pi, pj) the refined
intensity I(i, j) is then computed as follows:

I(i, j) = [1− w(i, j)] · I0 + w(i, j) · Ic (3)

where Ic is the corrected intensity value of the pixel (i.e. after Step 3.
in the aforementioned algorithm) and I0 is the original (uncorrected)
pixel intensity.

3. METHODOLOGY

It is common practice in the medical literature to use numerical sim-
ulations and mathematical phantoms to measure the performance of
MAR techniques, as this allows for reliable quantitative performance
analysis [12, 17, 32, 33, 34, 35].

We use a 2D phantom composed of two large circular iron in-
serts (diameter 2 cm) surrounded by circles of cancellous (soft) bone;
three small isolated circular iron inserts (diameter 0.4 cm) and a re-
gion of fatty tissue. The remainder of the phantom is composed of
water. The numerical simulation of the phantom was performed us-
ing a state-of-the-art simulator based on that presented by De Man
et al. [3], extended with a distance driven projector [36]. This
2D simulator has been used extensively in previous MAR studies
[3, 12, 32, 34, 35]. The simulation models the effects of beam hard-
ening (due to the polychromatic nature of X-ray spectra), scattered
radiation, projection noise and the trans-axial non-linear partial vol-
ume effect. De Man et al. [3] have cited these as the predominant
causes of streaking in medical CT images. The simulation includes
a 10-times subsampling of the detector elements, a 5-times subsam-
pling of the source (using a source width of 1 mm) and a 5-times



subsampling of the projection views (to model the continuous rota-
tion of the gantry). The effects of afterglow and detector-crosstalk
were not considered. Scatter is simulated according to the following
formula:

si = F0 · Cc · yi · ln(bi/yi) (4)

where si is the scatter value at position i in the sinogram and i in-
dicates both the angle and position (within the detector array) of the
projection line; F0 is the fraction of photons scattered forward (at
an angle of 0o); Cc is the fraction of the attenuation resulting from
Compton scatter (i.e. electron-photon interactions); yi is the trans-
mission simulation value at i and ln(bi/yi) is the log-converted sino-
gram (bi is the blank scan value representing the detected number of
photons in sinogram pixel i in the absence of an absorber).

A fan-beam acquisition was simulated using 672 detectors and
1160 views per rotation (360◦). We used a focus-to-isocentre dis-
tance of 570 mm, a focus-to-detector distance of 1040 mm, a Field
of View (FoV) diameter of 50 cm and a detector angular aperture of
0.0774◦ (these geometric parameters approximate the Siemens SO-
MATOM Sensation 64 CT scanner). A simulated X-ray spectrum
was generated using the Xcomp5 software [37] at a nominal tube
voltage of 140 kV. After simulation, the fan-beam sinograms were
rebinned to parallel beam data [38]. Filtered Back Projection (FBP)
was used to create the reconstructed image with 512 x 512 pixels.
The final, artefact corrupted simulation is illustrated in Fig. 2 (a). To
allow for quantitative analysis, a reference image was generated us-
ing an identical polychromatic simulation but without metal inserts.

Furthermore, a spiral CT scan (see Fig. 4) of a patient with a
double hip prosthesis is used as clinical test data. The spiral CT data
was acquired on a Siemens Sensation 16 system as part of a Bio-
graph16 PET/CT scanner (Siemens Medical Solutions, Knoxville,
TN) at a nominal tube voltage of 120 kVp, a Computed Tomogra-
phy Dose Index (CTDI) of 11.9, using a collimation of 16 x 1.5 mm.
A reconstruction slice thickness of 3 mm was used. Prior to recon-
struction, the spiral data was rebinned to parallel beam data [38].

The MAR method in [16] was initially intended for use in the
aviation security screening domain. We thus include a data set com-
posed of 12 volumetric baggage CT scans (e.g. Fig. 1) obtained us-
ing the CT-80 model dual-energy baggage scanner (Reveal Imaging
Inc.). A fan-beam geometry was employed with a focus-to-isocentre
distance of 550 mm, a focus-to-detector distance of 1008.4 mm at a
nominal tube voltage of 160 kVp. The optimal spatial resolution of
the scanner is 1.56x1.61x5.00mm. Prior to reconstruction, the fan-
beam sinograms were rebinned to parallel beam data [38]. The vol-
umetric baggage scans contain multiple metallic objects (firearms,
belt buckles, metallic zippers etc.) in cluttered environments. We
consider all non-metallic objects in the scan as clutter and these in-
clude a variety of commonly encountered objects of varying density
(e.g. clothing, bottles etc.).

Quantitative performance analysis for the simulated data is per-
formed by computing the Normalised Root Mean Squared Error
(NRMSE) [39, 40] of the difference between the FBP-reconstructed
image without metal inserts and the MAR-corrected image:

NRMSE =

√√√√∑Ñ
j=1(fj − f

ref
j )2∑Ñ

j=1(f
ref
j − µ)2

(5)

where fj is the corrected image; frefj is the reference image; µ is
the mean of all the reference image intensities and Ñ is the (reduced)
number of pixels in the image (as the regions corresponding to the
metal inserts are not considered).

For the patient and baggage CT data (where no ground-truth is
available), quantitative analysis is performed using the reference-

free error metric of Kratz et al. [41] which utilises the raw projection
data outside of the metal trace as ground-truth data. The Normalised
Reference-Free Errors (denoted as NRFE) are represented as a fac-
tor of the unprocessed (FBP) error (a value of 1 would correspond
to no improvement). Two individual 2D axial CT slices (1 baggage
slice and 1 patient slice), exhibiting significant streaking artefacts,
are used for these error analyses.

The patient and baggage CT data are subjected to further quan-
titative analysis using Bland-Altman plots [42]. The Bland-Altman
plot considers the mean intensities in three types of image regions
before and after MAR: 1) overestimated regions (pixel densities
higher than expected due to artefacts); 2) underestimated regions
(pixel densities lower than expected due to artefacts) and 3) unaf-
fected regions (pixels unaffected by streaking). In each individual
2D axial CT slice obtained from the clinical data as well as selected
axial slices obtained from the 12 volumetric baggage scans, 5 ROIs
are manually specified (2 overestimated, 2 underestimated and 1
unaffected). Two measurements are made for every ROI: 1) the
mean intensity of the ROI before MAR and 2) the mean intensity
of the ROI after MAR. The Bland-Altman plot then plots the dif-
ference of the two ROI measurements as a function of their mean.
Successful MAR should yield a decrease in the mean intensity of
the overestimated regions, an increase in the underestimated regions
and little/no change in the unaffected regions.

4. RESULTS

The performance of the proposed MAR method (denoted as Mouβ)
was compared to that of our earlier approach [16] (denoted as Mouα)
for each data set, using the aforementioned analysis techniques. The
Mouα approach has previously been shown to perform compara-
bly to several state-of-the-art methods in [16, 25], but for the sake
of completeness, the performance of the linear interpolation-based
MAR approach of Kalender et al. [4] (denoted as Kalender) is in-
cluded in the error and qualitative performance comparisons.

Table 1 shows the Normalised Root Mean Squared Errors
(NRMSEs) for the simulated data and the Normalised Reference-
Free Errors (NRFEs) for the patient and baggage data. As demon-
strated in our earlier work [16], the Mouα approach yields a re-
duction in error compared to both the unprocessed (FBP) image as
well as the linear interpolation approach of Kalender [4] in all three
scenarios. More significantly, the Mouβ approach has resulted in a
13.6% decrease in error in the simulated image, a 24.3% decrease
in error in the patient image and an 11.5% decrease in error in the
baggage image.

Figs. 3 - 5 show the qualitative results for the images used in the
above error analyses. As expected, the Mouα and Mouβ approaches
yielded significant reductions in streaking (compared to the FBP im-
age) and further produced superior images compared to the Kalender
approach. At first glance, the Kalender image in Fig. 3 appears to
be of good quality with very little streaking. Upon closer inspection
(magnified images on the right in Fig. 3) however, a loss in edge
and contrast information is apparent. This deterioration in image
quality is not evident in the Mouα,β images. While a similar blur-
ring is evident in the patient and baggage Kalender images (Figs. 4
and 5), the images are further corrupted by secondary streaks - es-
pecially evident in the background regions. The regions marked in
yellow in Fig. 4 illustrate where the Kalender image contains sec-
ondary streaking and the Mouα,β images are free of streaking. The
yellow regions in Fig. 5 show streaks in the FBP image which the
Mouα,β methods removed but the Kalender method did not. The
magnified images in each of the Figs. 3 - 5, further demonstrate the
superior performance of the Mouβ approach in regions containing
dark bands. While the improvements for the simulated (Fig. 3) and
patient images (Fig. 4) are significant, they are less obvious in the



Method
NRMSE

(phantom)
NRFE

(patient)
NRFE

(baggage)
FBP 0.872 1.00 1.00
Kalender 0.401 0.460 0.537
Mouα 0.221 0.238 0.259
Mouβ 0.191 0.180 0.229

Table 1. Quantitative error analysis results for phantom, patient and bag-
gage experiments.

Fig. 3. Qualitative analysis results for phantom data. The magnified images
on the right show a more detailed comparison of performance. Window =
800 HU, Centre = 0 HU

baggage image (Fig. 5). The underestimated regions in the baggage
data are, however, inherently more difficult to identify to the naked-
eye due to the high dynamic range of the images. Nonetheless, the
magnifications in Fig. 5 display a noticeable increase in the intensity
in the region between the two high density objects (marked in red).

Figs. 6 and 7 show the BlandAltman plots generated from the
uncorrected and corrected CT data for the patient and baggage data
sets respectively. The overestimated (OE), underestimated (UE), and
unaffected (UA) regions in each data set are represented using dif-
ferent coloured markers. The graphs for both experiments confirm
the desired modifications to the image intensities in the overesti-
mated (yellow markers) and unaffected regions (red markers) after
MAR. Since the Mouβ approach only modifies the behaviour of the
Mouα approach in the regions connecting metal objects, the two ap-
proaches give the same results for the overestimated and unaffected
regions. As desired, for both the patient (Fig. 6) and baggage data
(Fig. 7) the readings in the overestimated regions are consistently in
the positive portions of the graphs (along the vertical axes), indicat-
ing a reduction in the overestimated intensities after MAR. Further-
more, for both data sets, the readings in the unaffected regions are
closely clustered around the horizontal axes, indicating little to no
change in the image intensities after MAR. The green and blue mark-
ers display the behaviour of the Mouα and Mouβ approaches respec-
tively in the underestimated regions and clearly demonstrate the im-
provement achieved by the proposed modifications to the Mouα ap-
proach. While the Mouα approach yielded readings clustered around
the horizontal axes (indicating little/no change in the intensities after
MAR), the Mouβ readings in both experiments consistently occurred
in the negative vertical portions of the graphs - indicating a success-
ful increase in the underestimated intensities.

The results in the quantitative and qualitative analyses confirm
that the proposed modifications to the intensity limiting MAR tech-
nique of Mouton et al. [16] lead to improved metal artefact reduction
in CT images containing multiple metal objects.

5. CONCLUSIONS

This study presents an extension to the intensity limiting CT-MAR
approach of Mouton et al. [16] (previously proven against the state-
of-art [16, 25]). A weighting scheme is introduced into the inten-
sity limiting process, whereby the location of pixels relative to metal
objects are considered. Subsequently, less intensive intensity limit-

Fig. 4. Qualitative analysis results (with magnifications on the right) for
patient data. The regions marked in yellow show where linear interpolation
(Kalender) has resulted in secondary streaking and Mouα,β have not. Win-
dow = 500 HU, Centre = 0 HU

Fig. 5. Qualitative analysis results (with magnifications on the right) for
baggage data. The regions marked in yellow show where linear interpolation
(Kalender) has failed to remove streaking and Mouα,β have succeeded.

Fig. 6. Bland-Altman plot for clinical data. Yellow = overestimated; red =
unaffected; green = underestimated (Mouα); blue = underestimated (Mouβ ).

Fig. 7. Bland-Altman plot for baggage data using Modified Hounsfield Units
(MHU). Yellow = overestimated; red = unaffected; green = underestimated
(Mouα); blue = underestimated (Mouβ ).

ing is applied in the straight line regions connecting multiple metal
objects, thereby better compensating for the characteristic underes-
timated attenuation coefficients in these regions. Comprehensive ex-
perimentation, using both clinical and simulated medical CT data as
well as cluttered baggage CT data has shown a significant quantita-
tive as well as qualitative improvement in performance.
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