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Abstract. Autonomous flight within a forest canopy represents a key
challenge for generalised scene understanding on-board a future Un-
manned Aerial Vehicle (UAV) platforms. Here we present an approach
for automatic trail navigation within such an unstructured environment
that successfully generalises across differing image resolutions - allowing
UAV with varying sensor payload capabilities to operate equally in such
challenging environmental conditions. Specifically, this work presents an
optimised deep neural network architecture, capable of state-of-the-art
performance across varying resolution aerial UAV imagery, that improves
forest trail detection for UAV guidance even when using significantly low
resolution images that are representative of low-cost search and rescue
capable UAV platforms.
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1 Introduction

Challenging activities such as Search and Rescue (SaR) missions [14], visual
exploration of disaster areas [2,1] aerial reconnaissance and surveillance [13,6],
assessment of forest structure or riverscape [4,12,10] have one thing common:
an unstructured environment within which a Unarmed Aerial Vehicle (UAV)
could be deployed for autonomous navigation. In most scenarios UAV are man-
ually controlled and it is the pilot who defines and navigates the flight. Growing
interest in solving this challenge has motivated researchers to investigate the
use of Deep Neural Networks (DNN) to identify trail images for UAV navi-
gation. Within such unstructured environments, a trail represents an existing
loosely defined navigation pathway (thoroughfare) used by humans and animals
that have transited the environment previously. As such, trails tend to facilitate
semi-efficient point-to-point transit routes with lesser obstacle occurrence, hence
making them key elements of any effective autonomous navigation in these envi-
ronments. However, in order to train such a DNN for the trail navigation task,
a large volume of labelled data is required, which is challenging to obtain due to
the nature of the target task in hand (i.e. sub-canopy UAV operation).

Creative ways to address this data colection issue include gathering data with
a head-mounted rig [7], a wide-baseline rig [15], flying the UAV into obstacles
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[5] and the use of simulated environments [11,9]. Under any such situation, the
generalisation of the resulting DNN model remains constrained due to the fact
that only one domain have being used in training.

The data gathered from multiple mounted cameras often entails a high level
of discrepancy in illumination between images as we can observe from an im-
age triplet retrieved simultaneously during data gathering of the IDSIA dataset
(Figure 1). When comparing the three images from the top row (Figure 1), we
can observe that the forward camera tends to capture a much clearer view of
the trail, with better illumination than the sideways camera. A similar pattern
is also observed on the bottom row and although varied illumination conditions
may facilitate the distinction from the left and right images to the center it is
not an accurate representation of the real environment experienced by an UAV
in flight (Figure 1). Additionally, the features characterizing a trail are typically
present in the triplet set with the only discrepancy being the extent of sideways
vegetation/obstacle that is found in each image ( illustrated by Figure 1). As a
result, for a classification problem we observe that any DNN is essentially only
learning how to identify where the UAV is positioned within the environment as
opposed to finding the position of the trail (Figure 1).

Fig. 1. Example from the IDSIA dataset [7] of varied luminance condition often present
when using multiple mounted cameras for image data collection within the forest
canopy.

In this scenario the steering decision is usually made by identifying wherever
the UAV is flying too close to the vegetation/obstacles which are commonly
found on the left or right side of the trail. Based on this information the UAV
position can be adjusted by calculating the turning angle [7,15], which tends to
lead to a new orientation (of the UAV) towards the center of the trail.

By contrast to early work of [7,15,5] that use a multiple camera approach,
our work demonstrates that the same trail direction required for automous UAV
navigation can be acquired by using imagery gathered by a single forward-facing



III

camera (Figure 2). This is due the fact that the center of the forward-facing
camera usually shows the trail ahead, for a correctly oriented UAV relative to the
trail direction (Figure 2 - centre). Additionally, we demonstrate that a trail can
be identified in unseen trail examples by training the model with data gathered
across varying devices, camera resolutions and forest locations. This not only
facilitates more general data gathering but also eliminates the need for synthetic
data and augmentation. As result, the same model can be used by UAV with
differing sensor payload capabilities.

Fig. 2. Abstraction of three way image cropping performed on varied camera view
(IDSIA dataset [7])

In summary in this work we present a method that both simplifies data gath-
ering and allows real-time labelling of data examples for this trail navigation task,
increasing generality in the resulting DNN solution. In addition we present an
optmized DNN that learns the position of the trail and a public available dataset
(http://dx.doi.org/10.15128/r1st74cq45z) gathered localy (Durham/UK)
which allows easy reproductibility of this work.

2 Related Work

Scene understanding within unstructured environments with varying illumina-
tion conditions are critical for autonomous flight within the forest canopy. Sig-
nificant advancement towards this goal was achieved by [7] which provided a
dataset gathered by a human trail walker using a head-mounted rig with three
cameras, allowing their proposed DNN architecture to identify the direction of
the trail in a given view - {left, right, forward}. A similar approach is followed
by [15] whereby a wide-baseline rig is used, also with three cameras, to gather
data which they used to augment the dataset of [7] (denoted: IDSIA dataset).

http://dx.doi.org/10.15128/r1st74cq45z
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As a result, the approach presented by [15] is capable of estimating both lateral
offset and trail direction. In both cases [7] [15], the authors, follow the common
practice of dataset augmentation, via affine image transformations, which adds
extra computation without any improved performance guarantees.

Alternatively, synthetic data, from virtual environment models, could poten-
tially replace or at least supplement hard-won real environment data [9,11,18].
However, the significant discrepancy between synthetic data and real-world data
often results in models that are trained only on synthetic environment examples
not being able to directly transfer this knowledge to real-world operating tasks
[5,16,9,3].

Even when training a DNN using only real-world data, it must be noted
that the models trained on a limited domain-specific dataset often fail to gen-
eralise successfully. In addition, since common DNN architectures require the
dataset to be formed from fixed resolution images [8], models commonly fail to
generalize across domains. Recent work of [17] investigated the use of reinforce-
ment learning applied in conjunction with Q-learning and adversarial learning
frameworks, which could potentially improve the generalisation of the model to
different domains. Although encouraging results have been found, which were
primarily achieved in a semi-structured environment (roadway), the suitabil-
ity of this approach in a dynamic and complex environment such as sub forest
canopy remains debatable. Instead of only focusing in improving generalisation
across domains, our work also investigates the generalisation across varying res-
olution aerial UAV imagery, by combining a dataset of high-resolution images
with a much lower resolution image dataset which better represents UAV with
low payload capabilities. Furthermore, we demonstrate a simpler method to data
gathering, inspired by the work of [7] that can improve the identification of trails
or similar thoroughfares on unstructured environments.

3 Approach

Here we are primarily motivated by the three class problem presented by [7]
in which an estimation of the trail direction, {left, right, forward}, is achieved
by processing an image triplet of left/right/forward camera views via a DNN.
In contrast to [7,15], our approach uses only a single forward facing camera
view which is more representative of an operational UAV scenario (i.e a single
forward facing camera; minimal size, weight and power). This image view is
then itself cropped into {left, right, forward} which can be labelled for trail
presence/absence (Figure 2).

Using the architecture of [7] (illustrated in Figure 3), we evaluate varying
image resolution, the use of additional data augmentation (DA) and activation
function (tanh() / ReLU()). As illustrated in Figure 3 the network is composed
of 10 layers that are subdivided into four convolution and four pooling layers,
followed by a fully connected layer and a softmax layer. The result of each con-
volution layer is fed into a maximum pooling layer. A final softmax layer outputs
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Fig. 3. An outline of our DNN architecture - based on [7]

maps to an associated probability for our three class labels {left, center, right}
from which navigation decisions are then made.

The DNN training uses a gradient descent optimiser, random weight ini-
tialisation with zero node biases and is performed over 90 epochs with a 0.05
reduction in learning rate per epoch (decay rate: 0.95). For both training and
testing we use the high-resolution (752× 480) IDSIA dataset (from [7]; denoted
H in results of Table 1) and a low-resolution (320 × 240) Urpeth Burn (UB)
dataset, gathered locally (County Durham, UK; denoted L in results of Table
1). For training 36,078 high-resolution and 32,017 low-resolution image were
used, while for testing 12,252 high-resolution and 5,152 low-resolutions images
were used. All DNN training is performed on a Nvidia 1060 GPU.

Further data augmentation (mirror, translation & rotation) was performed
on a copy of this original dataset, resulting in a total data set size of 72,135 high-
resolution image. For simplicity of reporting, we define NA as non-augmented
data obtained results and DA as data augmented obtained results (Table 1).

Our approach allows image labelling to be performed in automatically since
the retrieved image, captured facing forward with the trail in the centre, is simply
cropped in 3 equal sizes; for each side, a label is associated as follow: C - center
(trail), L - left (no trail) and R - right (no trail).

Our DNN model thus learns the signature of a trail associated to class C and
non-trail associated to classes L and R. These class labels are returned based on
the contents of the left, right or center image crop independently of its actual
origin from the full sized image. As a result, the presence of class C within the
image can be directly correlated to trail presence (Figure 4).

Based on the output certainty from the final softmax layer in the DNN for
class C, the presence of a trail in each of the {left, right, center} cropped im-
age regions can be determined facilitating a second labelling for trail presence
/ absence to be performed. As a result we arrive at a set of six possible classes
{L − TF,L − NT,R − TF,R − NT,C − TF,C − NT} for our original set of
image regions, {left, right, centre} with either a Trail Found (TF) or No Trail
(NT) label. Within our exploratory formulation, we envisage the navigation de-
cision being taken based on the direction (image region) with the highest level
of confidence for trail presence (TF in Figure 4).
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Fig. 4. Illustration of level of confidence outputed by the DNN for each image crop.

4 Results

Our experimental results are divided into three sets:- (1) image triplet approach
of [7] with differing activation functions (tanh()/ReLU() - Table 1, upper two
divisions), (2) our proposed approach (single forward view image, split into three
views - Table 1, middle division, bold) and (3) the impact of high/low/varied
image resolutions on performance (Table 1, lower division). Due to the variety of
resolution and demographic distribution in the dataset, a 10-fold cross validation
was performed across the range of proposed methods (Table 1). The testing
dataset (unseen data) was processed by each model, generated during training
and its performance can be observed in the blox plot Figure 5, which includes
median values and outliers for each fold.
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Giusti et al. [7] 3 tanh() H H 0.46 (±0.06) 0.50 0.53 0.38 0.98 0.04 0.37 0.67 0.07 0.38

Giusti et al. [7] 5 tanh() H H 0.73 (±0.08) 0.97 0.72 0.62 0.62 0.77 0.81 0.76 0.74 0.70

Giusti et al. [7] 3 ReLU() H H 0.40 (±0.06) 0.44 0.89 0.29 0.99 0.03 0.20 0.41 0.60 0.06

Giusti et al. [7] 5 ReLU() H H 0.66 (±0.07) 0.97 0.69 0.54 0.49 0.69 0.82 0.65 0.69 0.66

Our Approach 3 ReLU() H H 0.93 (±0.09) 0.99 0.90 0.94 0.86 0.98 0.96 0.92 0.94 0.96

Our Approach 5 ReLU() H H 0.92 (±0.09) 0.97 0.88 0.93 0.83 0.98 0.97 0.89 0.93 0.96

High Resolution 5 ReLU() H L 0.51 (±0.09) 0.61 0.49 0.49 0.05 0.73 0.70 0.09 0.59 0.57

Low Resolution 5 ReLU() L L 0.73 (±0.06) 0.80 0.74 0.66 0.57 0.77 0.82 0.67 0.76 0.73

Varied Resolutions 5 ReLU() H+L L 0.74 (±0.06) 0.80 0.76 0.67 0.60 0.78 0.82 0.68 0.77 0.74

Varied Resolutions 5 ReLU() H+L H 0.93 (±0.02) 0.97 0.91 0.91 0.84 0.97 0.98 0.90 0.94 0.94

Table 1. Results performance for testing in high (H) and low (L) image dataset combi-
nations, computed for each class (C - Center, R - Right, L - Left)
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Fig. 5. Comparison of performance from the highest accuracy model for each approach,
based on 10-fold cross validation.

Overall we see what the use of the ReLU() activation outperforms tanh() and
our approach gives high levels of mean accuracy without the need for data aug-
mentation outperforming the prior reported results in [7] (in fact no significant
improvement was achieved by data augmentation).

Although our approach fails to generalise when trained with high-resolution
images on to low resolution images, it achieves 93% mean accuracy when low-
resolution images are added to the training dataset and achieves 73% mean
accuracy for training and testing on low-resolution images only (Table 1, lower
division).

Fig. 6. Comparison of performance of Giust et al.[7][NA] (left) versus when Our Ap-
proach [NA] (right).
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Further analyse of the testing dataset (Table 1) also highlights that augment-
ing the data, specifically for this scenario, does not improve the classification of
the view direction. By looking at the distribution of each approach (Figure 5)
we can observe that combining different image resolutions during training is
advantageous regardless of the resolution of the testing image.

When analysing the confusion matrix (Figure 6 - left) showing the test results
derived from a model trained using Giusti et. al [7] approach, we can observe
that since each frame usually contains both trail and vegetation, it is harder
for the model to correct distinguish between the classes. In contrast the model
trained using our approach (Figure 6 - right) can easily classify each side.

Fig. 7. Comparison of how Our Approach [NA] classifies images with low (right) and
high (left) resolution.

Regardless of the image resolution in the testing dataset, the same pattern
can be observed when comparing the confusion matrix (Figure 7) of a model
trained with a dataset containing split images of varied resolution.

These findings can be also observed on the qualitative results presented
on Figure 8 and 9, whereby we demonstrate a second labelling for tail pres-
ence/absence. Currently we can not quantify the accuracy of this extended la-
belling without manually checking each one. Due to that the qualitative results
shown on Figure 8 and 9 are based on a hand picked selection of the most chal-
lenging scenarios from the testing dataset. These scenarios are then evaluated
by different models and the level of accuracy is compared accordingly.
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Fig. 8. Comparison of performance of different models when tested on high resolution
images (IDSIA dataset [7]).



X

Fig. 9. Comparison of the performance of different models when tested on low resolu-
tion images.
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5 Conclusion

In this paper, we present an alternative method to gather and process UAV im-
agery that improves the level of accuracy for trail navigation under forest canopy
based on the use of a single forward facing camera view instead of the multiple
camera approach of [7,15]. Our approach also performs well across varying image
resolutions and increases the capability of low-cost UAV platforms with limited
payload capacity. Future work will include additional aspects of UAV percep-
tion and control targeting end-to-end autonomy across this and other challenging
operating environments.
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