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Abstract

Deep Neural Networks have received considerable attention in recent years. As the
complexity of network architecture increases in relation to the task complexity, it be-
comes harder to manually craft an optimal neural network architecture and train it to
convergence. As such, Neural Architecture Search (NAS) is becoming far more preva-
lent within computer vision research, especially when the construction of efficient,
smaller network architectures is becoming an increasingly important area of research,
for which NAS is well suited. However, despite their promise, contemporary and end-
to-end NAS pipeline require vast computational training resources. In this paper, we
present a comprehensive overview of contemporary NAS approaches with respect to
image classification, object detection, and image segmentation. We adopt consistent
terminology to overcome contradictions common within existing NAS literature. Fur-
thermore, we identify and compare current performance limitations in addition to high-
lighting directions for future NAS research.
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1. Introduction

Recent acceleration within the deep learning domain [1]] naturally follows the in-
creased availability of public datasets that stems from the emergence of big data. Un-
surprisingly, the complexity of the proposed network architectures is also increasing.

As such, manually searching through this architecture space is less and less feasible,
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and we must rely on domain expertise to identify suitable networks for a given ap-
plication. Neural Architecture Search (NAS) automatically traverses the architecture
search space for a given task, and generates models that are competitive alongside
hand-crafted state-of-the-art architectures.

Recent NAS capability within the image classification domain is demonstrably
powerful [2], with generated convolutional neural network (CNN) models achieving
accuracies of 97.57% (CIFAR-10 [3]) and 76.2% (ImageNet [4]). This is comparable
to leading image classification performance [5]. However, there is relatively little NAS
development outside pure CNN generation (e.g. transformer [6] and generative ad-
versarial networks [[7]]), for which hand-crafted network architectures perform so well.
Similarly, within the computer vision domain, considerations of NAS beyond image
classification are under-developed; NAS for object detection and image segmentation
architectures for example, receive less interest than their hand-crafted counterparts. To
this end, we present a comprehensive review of recent NAS advancements, to best fa-
cilitate further insight and research in this area. We build upon existing — although
now dated — surveys [8 9, 110} [11} [12], that fail to consider NAS for computer vision
outside of CNN image classification. Concurrent work [[13} [14] presents a less com-
prehensive overview to which the reader may find it helpful to refer. In either case, we
hope that this review serves to best illustrate the contributions of prior NAS literature.

Furthermore, as NAS rapidly evolves within several distinct domains, ambiguities
and inconsistencies have arisen in several methodological descriptions. Consequently,
it is increasingly difficult for researchers approaching the NAS domain to meaningfully
engage with the field and to clearly explain any proposed methodology with reasonable
reproducibility. With this shortcoming in mind, we adopt a common terminology (fol-
lowing that of TuNAS [15]), to improve the comprehensibility and reproducibility of

future NAS research. On this basis, our contributions are as follows:

— a systematic review providing the most comprehensive NAS survey of image



classification, object detection, and image segmentation domains to date.

— an overview and taxonomy that for the first time uses consistent terminology
across all contemporary NAS literature, resolving the ambiguities and inconsis-
tencies emanating from the original NAS works.

— analysis of the NAS literature offering insights into the direction of promising

future research.
1.1. Review Organization

We first divide this review by computer vision task into image classification, ob-
ject detection and image segmentation NAS methodologies. Subsequently, image clas-
sification is subdivided by NAS strategy into three key sub-areas: weight-sharing,
gradient-based, and prediction-based, each of which correspond to a NAS search speed-
up strategy. In all cases, we prioritise explaining how a given NAS method fits into the
evolution of the NAS domain, while maintaining consistent terminology, to the best

advantage of incoming researchers.
2. Neural Architecture Search: A Quick Overview

Rather than conventionally hand-crafting a neural network architecture, wherein
layer operations are hand-selected and defined at each layer, NAS seeks to automati-
cally generate the network architecture best suited to a given task, given a set of avail-
able operations. An overview of the general NAS process is illustrated in Fig. [I]
which can be split into two key stages. First, the search phase involves traversing all
architectures within the search space. Once the top performing architecture (or top-k
architectures) is identified (termed final searched architecture(s)), it is retrained from
scratch (the evaluation phase).

With the rise of NAS, a multitude of recent literature has addressed the scalability
challenge which occurs due to the resultant large search space of all potential neural

network architectures and their respective training costs. The seminal work of Zoph



et al. [16] demonstrates the capability of recurrent neural networks (RNN) with rein-
forcement learning to generate network architectures automatically, with their network
architecture outperforming existing hand-crafted state-of-the-art network architectures
both in accuracy and speed for both image classification and language modelling tasks.

Since this influential paper [16], interest and research in NAS has accelerated [8].
Reinforcement learning [[17} (18} 19, 20] methods, as well as evolutionary [21} 22|
23|, 24| 25]] approaches have since been developed. Notably, MnasNet [19]] adopts
a reinforcement learning search strategy for both image classification and object de-
tection, incentivised towards minimising inference latency. Unmistakeably however,
such NAS search strategies are prohibitively expensive. More recently, and with more
success in this regard, gradient and predictor based approaches have been developed
[26, 127, 128, 29], often in conjunction with weight-sharing techniques to improve con-
vergence rate [30, |31} [32]], notably by eliminating the need to train each architecture in
the search space separately.

As such, we limit the literature covered by this survey to more recent NAS solu-
tions for image scene analysis, where the training cost falls within a reasonable com-
putational time limit. Moreover, several NAS architecture datasets exist that facilitate
validation of the NAS framework performance, rather than their generated networks.
Notably among these, NAS-Bench-101 [33] contains 5 million trained and evaluated
models. NAS-Bench-201 [34] and NATS-Bench [35] also evaluate architecture size
and topology, with a fixed architecture search space but more diagnostic information
compared to NAS-Bench-101. An overview of literature covered by this review can be
found in Tables[T|and[2] which provide a fair comparison (where possible) across com-
mon NAS application domains. In all cases, however, it is important to adhere to best
practices when producing a NAS pipeline [36]. Radosavovic et al. [37] demonstrate

that the process of constructing the search space is critical.
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Table 1: Overview of NAS approaches, their performance, and the general methodology employed: Evolu-
tionary Algorithms (EA), Reinforcement Learning (RL), Gradient-Based (GB), Weight-Sharing (WS) and
Prediction (Pred). t entails object detection. § entails instance segmentation. Otherwise, reported results are
for Image Classification. Results correspond to the results reported in their respective original paper, even
when subsequent papers report higher performance or results generated using more comparable computa-
tional resources.
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Figure 1: An overview visualisation of the NAS process consistent across reinforcement learning, gradient-

based and prediction-based approaches

NAS search algorithm CIFAR-10 ImageNet-16-120

[-DARTS [49] (2019) 93.76 41.44
| SE-NAS[92] 2021) | 9347 +£0.14 | 4566+ 1.05 |
| unsupervised: DARTS [55] (2020) | 94.18 £0.24 | 4627+ 037 |
L FairNAS [56] (2021) | 9323+0.18 | 42.19+031 |
| PiNAS[371(2021) | 9383 +0.00 | 1 nfa |
| Shapley-NAS [2] (2022) | 9437 +£0.00 | 46.85+0.12 |
| Landmark Regularization:SPOS [69] (2021) | 93.41 +£0.43 [ 1 nfa |
| Landmark Regularization:GDAS [69] (2021) | 9432 £0.28 | 1 nfa |
| Landmark Regularization:NAO [69] (2021) | 93.53 £0.43 [ 1 nfa |
| Distribution Constrained [65] (2022) | 9429 £0.07 | 46.41+0.14 |
7777777 BossNAS [66] (2021)f | 9329 |  na |
T ReNAS [77] 2021) | 93.99 £0.25 | 4597 +049 |
| RMI[93](2022) | 9428 £0.10 | 4634 +0.00 |
- NASWOT [29] (2021) | 9296 £0.81 | 44.44+£210 |
| FreeRea[04] (2023) | 9436 £ 0.00 | 46.34 +0.00 |

Table 2: Some literature reports the NAS search phase prediction performance in place of or as well as final
searched architecture performance. In these cases we present the findings on NAS-Bench-201 on CIFAR-10
and ImageNet-16-120. { denotes experiments conducted on NATS-Bench, the successor to NAS-Bench-201.



3. Image Classification

Image classification is the primary challenge domain in which NAS operates within
the computer vision field and for which existing literature is most comprehensive.

The reader may find it helpful to refer to the following key concepts:

e Optimisation-gap — The performance after retraining a network architecture
from scratch does not necessarily reflect its performance after the search phase.
This is because ‘shortcuts’ are taken (e.g. weight sharing) to significantly im-
prove NAS search speed. See Section [3.2.2.1] for more information within the

context of gradient-based NAS approaches.

o DAG (Directed Acyclic Graph) — Reformulating a network architecture as a
graph (see Fig. [2h), where nodes represent a layer, and edges represent the oper-

ations within a layer (e.g. convolution).

e Search space — The total set of architectures that will be considered and possibly
evaluated by the NAS approach. The aim is to find the best possible architecture
in the architecture space. In all cases, this architecture space is prohibitively large
and it is impossible to evaluate the performance of each architecture. The NAS
paradigm aims to optimise how search strategies iterate over the search space.
For instance, the influential NASBench-101 [33]] search space contains 423,000

unique architectures.

e Final searched architecture — The architecture that the NAS search phase pro-
duces. The NAS strategy considers this architecture to be the best architecture in
the entire search space. The evaluation phase will retrain this architecture from

scratch to generate a final model.

e Topology — As opposed to width and depth, topology refers to the operations

(layers) within an architecture.



We provide an overview of NAS paradigms in the following order:

1. Weight-sharing (Section[3.1) — Introduced by ENAS [30]. By sharing weights
between architectures during the NAS search phase, candidate architectures do
not have to be trained separately to completion. Overall network architecture
training costs during the NAS search phase can be subsantially reduced.

2. Gradient-based (Section — By relaxing the architecture space such that
it is continuous (see the seminal DARTS [26]] method), conventional gradient-
descent methods can be used to optimise the search space efficiently. [1_-]

3. Prediction-based (Section — Introduce some auxiliary method to evaluate
network architecture performance without training, circumventing training iter-

ations and consequent high NAS search costs entirely.

The three NAS paradigms are further subdivided within each section by strategies

with shared characteristics.
3.1. Weight-Sharing

Weight-sharing approaches, first proposed in ENAS [30], reduce training time through
the transfer learning of weights learnt for previously sampled architectures. In general,
only a single network needs to be trained to convergence via the use of this technique.
Across all weight-sharing NAS approaches, this single network represents the entire
architecture search space, and is referred to as a “super-network.” Subsequent sam-
pled network architectures during the NAS search phase thereafter inherit initialisation
weights from this super-network, and they require few or zero training epochs before
their performance is sufficiently evaluated and ranked. As such, the total search phase
cost of NAS is drastically minimised. Since only the super-network is trained to conver-

gence during the NAS search phase, we refer to this approach as a one-shot methodﬂ

ISometimes referred to as differentiable neural architecture search (DNAS).

2“Weight-sharing” is a broad term to denote how different architectures considered by a given NAS
methodology do not use independent weights. “One-shot” (or equivalently “super-network™ under our ter-
minology) methods necessarily employ weight-sharing but not vice-versa.



In general, one-shot methods aim to rank architecture performance using their shared
weights [95] relative to each other rather than their absolute performance. Once the
highest-ranked architecture is determined during the search phase, it is retrained and
then fully optimised for the given task.

In their influential paper [30]], ENAS first contructs a single DAG to represent the
entire search space. First they fix the weights of the NAS controller (which determines
which nodes and operations are sampled from the architecture search space). The en-
tire super-network weights can be updated from the gradient of a single sampled cell
(child architecture). This process is repeated until one entire pass of the dataset has
been completed. Next, they again sample child network architectures, but this time
their weights are fixed (using transfer learning from the previously learned weights)
and instead train the controller using reinforcement learning. They proceed to alternate
training the child network architectures and controller for several iterations, at which
point the best-performing model is sampled, initalised with random weights, and re-
trained from scratch without the use of transfer learning weights.

Given an architecture «, its optimal parameters w*(a/) can be obtained by w*(«) =
argmin , £(«, w), where L is the loss function. The performance of v can be measured
by some metric R(«,w*(«)), such as its accuracy [30] or loss [31] on validation data,
or even latency. The goal of reinforcement learning can thus be described as maxi-
mizing the expectation of the reward R («, w*(«)) to find an optimal policy, yielding a

bi-level optimization problem with policy 7 and search space €2:

max Eqr(a:0,0)R(a, w" ()
] :
)]
st w*(a) = argmin, L(a, w)
3.1.1. Improving the Final Architecture Performance of Weight-Sharing NAS

Following the success of weight-sharing in [30]], the most obvious next step is to

find an architecture from the search space that is closer in performance to the best per-



forming architecture. SNAS [31] identifies that ENAS assumes a Markov Decision
Process that delays the reinforcement learning reward for architecture changes during
the ENAS search phase. Using a differentiable reward function better rewards struc-
tural architecture decisions, improving search efficiency. CAS [38] develops a NAS
learning paradigm whereby the cell structure evolves when trained on new datasets and
domains, without loss in performance on the previous dataset. By introducing con-
straints on the learned weights, ‘knowledge’ is projected in an orthogonal direction, so
that prior knowledge related to that of the previous dataset/domain is not lost.

CNAS [32] employs curriculum learning within the NAS search phase to improve
the tractibility of the objective function, yielding better quality architectures. The
search space is divided into a series of smaller architecture spaces, where the num-
ber of searched operations is gradually increased. Curriculum learning overcomes the
phenomenon where it is difficult for conventional one-shot methods [30] to satisfy the
reinforcement learning objective function during early training epochs.

BigNAS [39] finds better architectures through addressing the optimisation-gap is-
sue prevalent within NAS by adding regularisation and a novel initialisation strategy.
If the super-network is sufficiently trained, BigNAS demonstrates that a simple grid-
search strategy is enough to traverse the architecture search space efficiently. Addition-

ally, network architectures can be sampled under memory or latency constraints.

3.1.2. Improving Weight-Sharing NAS Speed

Despite the significant search stage acceleration that weight-sharing offers, the
computation costs of architecture search can still be prohibitively expensive. Proxy-
lessNAS [40]] demonstrates the effectiveness of subsampling only a single path through
the DAG at each iteration. Binary gates are introduced to simulate a mask for a given
activation path during a given training iteration. Consequently, training is more stable
and can be performed directly on large datasets such as ImageNet. Previous methods

were only able to achieve meaningful performance on large datasets by first training

10



on a smaller, proxy dataset. Two variants, ProxylessNAS-R and ProxylessNas-G are
presented, which use reinforcement learning and gradient-based methods (described
below) to traverse the architecture search space. Similarly, NASP [41]] use an approach
derived from the proximal algorithm [96] to ensure that only one operation in the DAG
is updated with each iteration, drastically improving convergence rate.

Several search methods consider shrinking the NAS architecture space [15 142} 44}
97, |45]] without loss in performance in order to reduce the time it takes to traverse
it. TuNAS [15] simulates smaller filter sizes via masking, which reduces the need to
train architectures that only differ in filter size. Additionally, the number of available
operations that can be selected is gradually reduced during the first 25% of epochs in
the search phase. The authors additionally propose a novel reward function, as well as
more aggressive weight-sharing.

AttentiveNas [42] improves upon the BigNAS search strategy by reducing the ar-
chitecture space size in a Pareto-aware fashion. The best Pareto architectures achieve
better accuracy than every other architecture in the search space with the same or less
computational consumption. The worst Pareto architectures are dominated in perfor-
mance by all other architectures with the same computational cost. Sampled candidate
network architectures are only trained if they lie on the best or worst Pareto front. With
this strategy, it is additionally trivial to impose a computational limit on the generated
network architectures. Similarly, RNSGA-Net [43] adopts the R-NSGA-II genetic al-
gorithm [98] to search for pareto-optimal architectures within a given region of interest.

Stage-Wise NAS [44] discard architectures according to a simple heuristic. By di-
viding architectures into ‘stages,” the importance of a given stage can be identified.
Fewer layers are attributed to stages with lower importance and the depth of the net-
work architecture is progressively increased during the NAS search phase.

ANASOD [97]] reduces the architecture search space without loss in performance

via approximate operation distribution encoding. On the basis that there is little dif-
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ference in performance between architectures with only slight differences, the archi-
tectures sharing a distribution of operations map to the same encoding. Using any
other NAS strategy to search over these distribution encodings rather than the entire
operation search space makes NAS optimisation more tractable.

PAD-NAS [45] reduce the architecture space by pruning operations. The pareto-
optimal architectures (and the next best, according to nondomination rank [99]) are
identified according to accuracy and latency. Operations that are not prevalent within
these best architectures are pruned. As such, a one-shot training strategy in conjunction

with evolutionary search based upon NSGA-II [99] is adopted.

3.1.3. Improving the Weight-Sharing NAS Architecture Space

Alongside improving search speed and accuracy of NAS approaches, the architec-
ture space itself can be improved beyond CNN architecture search. GLiT [46] employs
a one-shot NAS approach to optimise transformer architecture for image classification.
Building upon a Multi-Head Attention (MHA) block as the basis for the search space,
a locality module is further introduced such that each searched MHA cell has a varying
distribution of convolution-based locality modules (capturing local information within
an image) and self-attention modules (capturing global information within an image).
Adopting SPOS [100], GLiT divides the search space into disjointly searching for a)
optimal distribution of local and global sub-modules and b) detailed architecture of
modules given optimal distribution in (a). As a result, a vast transformer architecture
search space can be efficiently searched without compromising memory requirements.

Conversely, NEAS [47] searches for the best ensemble of classifiers. Where GLiT
adopts SPOS to divide the search space, NEAS instead shrinks the search space by
first computing an approximation for architecture similarity and operator quality. The
worst performing ensemble architectures with respect to diversity and quality are then
dropped. During the search phase, weights are shared between the lowest layers of the

remaining ensemble networks at a given iteration.
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It should be noted that weight-sharing techniques do not necessitate one-shot method-
ology. BONAS [48]] identifies the sensitivity to network initizialisation of one-shot ap-
proaches, as well as high memory requirements. To this end, Bayesian Optimisation
is used to identify similar network architectures. Weights are shared amongst these

similar network architectures so that they can be trained simultaneously.
3.2. Gradient-Based

Until now, we have considered weight-sharing techniques that optimise the archi-
tecture topology without updating the weights inherited from the super-network. Dif-
ferentiable approaches [26l [101} 27] build upon the weight-sharing technique through
the application of stochastic gradient descent and other well-used deep learning tech-
niques by relaxing the search space such that it is continuous. Consequently, the con-
vergence rate of the architecture is drastically improved. In general, this approach
proffers the fastest architecture search without significantly impacting performance,
but at the expense of a high GPU-memory intensity.

DARTS [26]] constructs a shallow super-network in which each layer is a softmax
over all possible operations within the architecture search space (Fig. [2a). This allows
traversal of the search space with gradient descent (Fig. [2b). Once the super-network
is trained (Fig. [2k), they extract the top-k best-performing operations at each layer,
and ‘evaluate’ a deep neural network under the resultant restricted architecture search

space to produce a final optimised model (Fig. [2d).

3.2.1. DARTS-Like NAS approaches

I-DARTS [49] builds upon DARTS by instead considering a softmax operation
before operations rather than after them. This removes the restriction upon the final
model to consider at most one operation between each layer, thereby widening the
search space, without reducing convergence rate. We can perceive such an approach as
Mixed-Path in that it does not require a single operation between each node (Single-

Path, [26] 40Q]), or multiple (but with a consistent number of) operations between each
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Figure 2: DARTS search phase pipeline. (a) The architecture search space can be realised as a Directed
Acyclic Graph (DAG): edges between nodes represent possible operations (e.g. convolution, max-pooling,
etc.). (b) A layer is a softmax over all possible operations within the search space. (c) Using SGD, this
super-network is trained in relation to which operations perform best, as well as the weights of the operations
themselves. (d) A final searched network is selected from the top performing operations at each layer.

node (Multi-Path, [102} [103]), see Fig. E[ Wu et al. [50] adopt an alternative Mixed-
Path approach. Rather than using softmax to relax the super-network graph into a
continuous DAG, each intermediate node output is computed as a scaled linear com-
bination of the feature maps of the previous nodes. By using Sparse Group Lasso
regularisation [[104]], nodes and operations may be filtered out such that there is no
rigid constraint on the node or path structure. E-DNAS [51] further introduces flexibil-
ity within the proposed architecture by explicitly searching for the optimal kernel size
as well as the weights of convolutional layers.

ISTA-NAS [52] adopts an alternative strategy compared to [S0] towards fulfilling
the sparsity constraint. By projecting the continuous relaxation of operations onto the
sparse constraint, its LASSO formulation [10S] can be solved with the ISTA [106]
algorithm. Consquently, ISTA-NAS enables the same size (width, depth, batch-size)
super-network to be used in both the NAS search and evaluation phase, due to the
sparse and more efficiently encoded super-network. Additionally, this has the benefit
of minimising the optimisation-gap problem (see below). DNAL [107] inroduce a

novel Scaled Sigmoid activation function that can be utilised alongside existing NAS
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Figure 3: Different NAS architecture configurations as presented by Wu et al. [S0]. (a) A NAS super-network
where each coloured edge denotes a single operation, and all possible operations are considered between
nodes through continuous relaxation (softmax layer). (b) Single-Path architecture; exactly one operation is
selected in the final searched architecture. (c) Multi-Path architecture; exactly n operations are considered
and aggregated between each and every node (for some pre-defined n). (d) Mixed-Path architecture; no
limitations on operation number between given nodes in the final searched architecture.

approaches, wherein the sparsity constraint is imposed on the the activation function
rather than the architecture parameters themselves, improving performance.

SE-NAS [92] improve DARTS search efficiency by shrinking the operation search
space. After initial training stages of the supernetwork, operations with lower impor-
tance are more likely to exist in weaker architectures and can be more readily dis-
carded. Due to weight sharing between architectures however, operator importance
can be easily misrepresented. Therefore, if there is little variance between architecture
performance within a layer, confidence in the architecture ranking is presumed worse,
and operations at these layers are retained.

BMTAS [53] employs a NAS pipeline within a differentiable search space best
adapted for multi-task learning. Through masking (to simulate training one sub-network
architecture at a time) and a novel resource-aware objective function, their pipeline for-
mulates and traverses the search space in a way that promotes general purpose features
(operations) within the final NAS-generated architecture.

SMASH [54] uses an auxiliary HyperNetwork [108]] network to generate the weights

of the network architecture itself. A super-network is generated to encompass the archi-
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tecture search space. Akin to conventional gradient-based NAS solutions, an architec-
ture is sampled from the super-network. However, where its weights would normally
be inherited directly, instead they are generated by a HyperNetwork trained a-priori.

Yan et al. [S5] employ a variational graph isomorphism autoencoder before travers-
ing the architecture search space. They conclude that this autoencoder out-performs
state-of-the-art autoencoders [[109} [110] and best captures the local structure informa-
tion of neural network architectures such that similar structures cluster better in the
latent space. Traversing the search space such that the next most similar, unevaluated
network architecture is evaluated in the next iteration, they are able to smooth the NAS
search phase, leading to better overall performance.

Simon et al. [[111] adapt DARTS such that convolutional layers have an additional
noise injection module. Weights associated with this module learn how much noise to
inject into a given input such that DARTS succesfully trains in the presence of label
noise. Indeed, the results indicate that the modified DARTS method achieves superior

performance in the presence of noise, without sacrificing performance on clean data.

3.2.2. Addressing DARTS-Like Strategy Drawbacks

Despite the multitude of developments directly upon DARTS, it is not without its
drawbacks [48\ [112]], and has received heavy criticism. To some extent, such prob-
lems can be minimised by careful super-network training schemes, including additional
batch normalization, prevention of over-regularization, and reduced dropout [95]]. Fair-
NAS [56] formally identifies weaknesses in training a one-shot model in general, and
proposes strict fairness (all single paths through the super-network are attributed equal
optimisation). Their work is deployable atop all two-stage NAS strategies, which they
choose to demonstrate within an evolutionary search strategy based on NSGA-II [99].

Yu et al. [112] identify the importance of random seed during the search phase.
Indeed some search strategies, especially DARTS, perform worse than random with

respect to some seeds. The authors’ findings align with [93] in that the ranking of
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architectures yields a poor reflection of their performance after the evaluation phase.
Further, weight-sharing is detrimental to the NAS search phase. Finally, good perfor-
mance from architectures can be attributed to the heavy search space restrictions, such

that even random search over the space yields high performing architectures.
3.2.2.1 The Optimisation-Gap

The predominant issue with DARTS however, is perhaps the optimisation-gap problem,
in which searched architecture performance does not necessarily correlate with its per-
formance after being re-trained during the NAS evaluation phase. One obvious reason
for this is that one-shot methods are ranking networks relative to each other rather than
their absolute performance [95]. The super-network architecture in the NAS search
phase generally differs considerably from a derived sub-network architecture in the
NAS evaluation phase. In fact, many NAS approaches only search for a cell structure
during the search phase (owing to available computational resources), which is then
stacked before being retrained during the NAS evaluation phase.

Pi-NAS [57]] addresses the optimisation-gap by considering the image inputs to the
NAS solution rather than directly addressing NAS operation and topology selection
strategies. Introducing negative samples to a training iteration draws benefits from the
well-founded contrastive learning domain. This ensures correct loss descent to deliver
a more accurate architecture ranking. Furthermore, a given input image is augmented
four times to be passed through separate super-network paths to yield better architec-
ture ranking. As such, the optimisation-gap is minimised as final searched architectures
better resemble their standalone performance.

EnTranNAS-DST [58] further addresses the optimisation-gap by representing non-
derived connections in the final searched model as zero-weighted connections. As
such, the propagation of the super-network in the NAS search phase is the same as the
propagation of the final searched architecture in the NAS evaluation phase, eliminating

the gap between the two.
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3.2.2.2 The Relationship Between Operation and Topology

DARTS derives its topology from the best performing operation, but optimal operation
selection does not guarantee optimal toplogy. Indeed, with rank correlation analysis,
DOTS [59] shows that a given searched cell within DARTS can be sub-optimal for
precisely this reason. To this end, by decoupling operation search and topology search,
they yield more optimal final searched topology.

Shapley-NAS [2] reconsiders how to derive the final searched architecture from
a super-network trained by DARTS. Given that there is often a complex relationship
between operations, simply selecting the strongest operation at each edge is flawed.
Instead, the Shapley score [[113}|114] for each operation can be approximated to quan-
tify its contribution. Moreover, employing Shapley score in place of gradient descent

better trains the super-network during the search phase.
3.2.2.3 Skip-Connections in DARTS

P-DARTS [27] builds on the DARTS method, and minimises the optimisation-gap by
progressively growing the NAS network depth during the search phase. However, they
identify that skip-connections within searched architectures are commonly considered
optimal by NAS approaches because they minimise the instability and difficulty of
training a deep network during the early stages of NAS search [115]. As a result how-
ever, the final architecture performance deteriorates. To compensate, P-DARTS incor-
porates operation-level dropout after skip connections, as well as a cap on the number
of skip connections that can occur in the final architecture. The authors achieve over 1%
lower error rate while offering an order of magnitude lower search time than DARTS,
and a two-orders-of-magnitude lower search time than its predecessors.

PC-DARTS [60] corroborates that the weight-free operations (skip-connections,
max-pooling) are prevalent within NAS-generated architectures since they increase
training stability in early NAS iterations. To alleviate this, the authors suggest an alter-

native approach, whereby only a few of the available operations are considered at each
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epoch. However, this in turn introduces further instability into the training process,
which is ameliorated by applying edge normalization (with negligible computational
overhead). FP-DARTS [61] similarly reduce considered operations by dividing the
operation space into two and searching on each operation set in parallel. The final ar-
chitecture is then derived from both searched architectures. Zela et al. [62] additionally
attribute the prevalence of skip connections within DARTS-generated architectures to
exploding eigenvalues during the NAS search phase. By increasing /2 regularization
when the dominant eigenvalue exceeds a threshold, DARTS performance is increased
across the board.

SETN [63]] refer to this phenomenon as the “Matthew effect.” Quickly converging
architectures appear as better sampling candidates: they consist of fewer convolution
layers, and thus perform poorly overall after retraining from scratch [62, [116] (for
instance a surplus of skip-connections at the expense of convolution layers). Conse-
quently, the best performing network architectures when fully trained might be ignored.
SETN adopts a single-path weight-sharing approach (Fig. [3p), but acknowledge that
randomly sampling the path [54,195] can lead to an unnecessary consideration of poorly
performing network architectures. Instead, a stochastic operation and input selection
strategy is proposed that avoids the Matthew effect, while simultaneously adopting an

evaluator to minimise the selection of poorly performing architectures.
3.2.2.4 Detrimental Weight Inheritance

Weight-sharing may lead to a poor evaluation of an architecture. A potentially pow-
erful architecture could be attributed a weak evaluation since it inherits inappropri-
ate weights [64]]. Solutions to this phenomenon tend to simultaneously address the
optimisation-gap issue by ensuring architecture weights sampled from the super-network
more closely resemble their final real world performance. DNA [64] divides the archi-
tecture search space into blocks with similar architectures, and weights are shared only

within the blocks. Distribution Consistent NAS [65] adopts a comparable strategy,
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whereby architectures sharing at least one operator are iteratively sampled and their
weights updated. The (layer-wise) architecture space is divided into clusters of archi-
tectures sharing operators at a given layer, via K-means clustering. The super-network
can thus be jointly optimised not only according to its parameters but also to its topo-
logical structure (i.e. between which architectures the weights can be shared [65]).
BossNAS [66] employs block-wise NAS similar to [64] within a CNN-transformer hy-
brid network. By constructing a searchable cell that can simulate both convolution and
transformer network architectures, and a fabric [117] consisting of several such cells
that optionally can halve the spatial resolution, the searched architecture resembles
either conventional CNN, transformer, or a mixture of the two.

GDAS [67] samples one architecture of the super-network at each training itera-
tion in an attempt to i) reduce the memory requirement during training and ii) increase
efficiency, and by extension the convergence rate of the network. Furthermore, the
authors suggest that searching for the best reduction cell can be ignored during the
NAS process, since they can be effectively hand-crafted and contribute less to overall
network architecture performance. They claim to produce state-of-the-art results in a
fraction of the time, but acknowledge that the results are not necessarily fair without re-
implementing existing methods and evaluating them on the same experimental setup.
NSAS [68] adopts an alternative approach to CAS (Section to prevent ‘forget-
ting’ prior knowledge (the previous network architecture performance reduces under
weights learned by a new architecture), through introducing a novel loss function that
penalizes such an occurrence. The NSAS solution is interleaved within the existing
GDAS framework, denoted GDAS-NSAS.

Landmark Regularisation [69] addresses the weight inheritance problem by im-
proving the quality of the weights of the super-network themselves. Prior to super-
network training, randomly sampled standalone architectures (landmarks) are trained

to convergence. During the training of the super-network, the performance of the sub-
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network architectures is preserved with an additional regularisation term within the loss
function. Super-network performance divergence from known landmark performance
can therefore be minimised such that a sampled architecture more closely resembles its
real-world performance. However, regularisation is only introduced after a sufficient

warm-up period to minimise detrimental performance during early training iterations.

3.2.3. Optimising NAS for Small Network Architectures

While NAS helps improve performance compared to conventional hand-crafted
neural network training, one significant benefit it offers is directly optimising for net-
work inference speed and memory cost. TAS [70] adopts a gradient-based search strat-
egy to search for optimal size (network width and depth) instead of topology. Su-
perfluous channel inputs (determining network width) and layers (network depth) are
pruned. By designing a novel loss function, complex architectures are penalised, and
the best performing network in terms of both accuracy and complexity is identified.
Using knowledge transfer with a KD algorithm [118]], the searched pruned network
architecture inherits weights from the trained super-network.

Other approaches allow for explicit searching of network architecture depth. Ne-
tAdaptV2 [71] enable architectures to be efficiently derived from the trained super-
network with respect to their latency constraints. A new searchable channel-level by-
pass connection (CBC) is introduced, whereby all output channels of a given layer can
be bypassed to simulate the removal of the entire layer. FBNet [[72]] employs a differen-
tiable NAS strategy wherein cells at different network architecture depths are searched
from different architecture spaces, across expansion rate, kernel size, and group num-
ber (for group convolution). Further, they demonstrate that optimising network latency
is a superior measurement over optimising FLOPs towards generating small and fast
networks. SVD-NAS [119] propose an algorithm to optimise the search for low latency
network architectures via the substitution of architecture layers with those optimised

for FLOPs (low-rank approximation). The results are presented for gradient-based
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NAS frameworks, but can be deployed alongside any two-stage NAS approach.
3.3. Performance Prediction

An alternative method to reduce NAS training speed is to forgo training to com-
pletion entirely and instead predict how well a given network architecture will perform
from its behaviour after minimal training. These methods can entirely circumvent some
of the drawbacks illustrated above, such as weight inheritance within gradient-based
NAS, as weights are not necessarily assigned at all. Performance prediction can either

be generated from an auxiliary model, or estimated after incomplete training directly.

3.3.1. Performance Prediction with Auxiliary Models

While training an auxiliary model introduces its own computational overhead, in
the extreme case only this one model might need to be trained in the entire end-to-end
NAS search stage. Converse to previously described NAS strategies, no model from
the architecture needs to be trained at all before its performance can be evaluated.

One of the earliest examples to in part adopt this strategy is PNAS [73]. All shal-
low network architectures in the search space are quickly trained and used as training
samples for an auxiliary predictor network. Progressively more complex network ar-
chitectures are constructed and evaluated by the auxiliary network. Of these, the k-best
are selected, trained, and used as training samples for the auxiliary network. The pro-
cess is repeated until network architectures of sufficient complexity are generated and
the predictor network guides the search through the architecture space.

NAO [74] employs an auxiliary predictor network to predict network architecture
accuracy from its continuous representation (generated from a second auxiliary net-
work). Gradient ascent can then be applied to determine the best network architecture
embedding. Finally, a decoder network is used to extract a generated network archi-
tecture from its continuous representation. Despite employing a gradient-based search
strategy, we include NAO within this section as an architecture sampled during the

search phase is not evaluated in a conventional manner (i.e. network propogation with
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images), but by an auxiliary predictor network. Morphological [75] NAO improve
performance by adding novel morphological operations into the search space.

Wen et al. [[120] train their own (graph convolutional-based) predictor regression
model, wherein IV architectures from the NAS-Bench-101 search space are sampled
along with their validation accuracies. Indeed, their network converges faster and more
accurately than the best identified predictor adopted by NAS-Bench-101 [33] (Regu-
larized Evolution [121]]). The regression model is further trained on the ProxlessNAS
[40] search space, yielding competitive models for ImageNet.

Baker et al. [[122] formulates architecture performance prediction within a Bayesian
framework. They train a predictor network upon both features (architecture parameters
and hyperparameters), time-series validation accuracy data (i.e. validation accuracy of
a given network at several different epochs, for many networks), and first and second
order validation accuracy differences. They train an ensemble of sequential regression
models where each successive model uses an additional point from the time-series data.
The final predictor network can determine whether a given partially trained network ar-
chitecture is worth terminating or continuing to train, and therefore is sufficient for fast
hyperparameter optimisation algorithms such as Hyperband [123} 124]].

GBDT-NAS [76] employs a gradient boosting decision tree (GBDT) in order to pre-
dict the performance of the neural network architecture during the search phase. They
further corroborate that pruning the search space into a smaller but well-performing
space allows the NAS controller to sample the best architectures with higher probabil-
ity [37]. By using GBDT to assess the contribution of an operation, they are able to
prune architectures that employ weaker operations.

ReNAS [77] encodes a given architecture into a feature tensor representing an ad-
jacency matrix of the operations between given nodes. A predictor is trained to map
feature tensors to architecture performance, wherein the predictor network prioritises

preserving architecture ranking. Absolute performance (MSE loss between a given
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Figure 4: Three step NAS process from RMI [93] paper. (a) RMI score is used to classify good and bad
architectures from the search space, additionally warming-up the random forest. (b) Architectures are se-
lected according to random forest confidence. The architecture performance is estimated via RMI score,
both classifying the architecture as good or bad, and for training the forest. (c) The most common operation
at each edge from the best architectures is selected to generate the final architecture.

architecture and its performance) is considered less important than ranking, since the
relative performance between two architectures is more important during the search
phase than their absolute performance.

RMI [93] reformulates the NAS search phase as an operation selection challenge
for a given edge in an architecture. In turn, this edge can be represented as a one-hot
vector, enabling representation of an architecture as a matrix, for input to a random
forest. Architectures are derived by the forest, through an iterative selection-update
process using a novel RMI score based on mutual information and approximated by
Hilbert-Schmidt Independence Criterion (HSIC) [[125]. Once a sufficient number of
architectures have been generated, the average (mode) operation for each edge is cho-

sen for the final architecture (Fig. [4).

3.3.2. Estimating Performance After Incomplete Training

An alternative prediction-based NAS approach without the use of an auxiliary net-
work is to quickly evaluate the performance of a network without training it to comple-
tion. Given an efficient evaluation process, all architectures in the architecture space
can be directly evaluated quickly. MdeNAS [28] posits that network architectures that

perform well after minimal iterations perform well after convergence, and demonstrate
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Figure 5: Visualisation of the ability of a generated
network to distinguish between given image inputs.
Row 4, column j corresponds to the hamming distance
between the binary codes representing the activation
pattern of the ReLU operations of the given neural
network architecture, induced by image ¢ and image
7. The matrix is normalised such that the distance be-
tween the codes induced by identical images (the di-
agonal) is 1. High-performing network architectures
(a) (b) (a) therefore have fewer off-diagonal elements.

their hypothesis within a multinomial distribution framework, achieving state-of-the-
art results six times faster than concurrent (non-prediction-based) NAS methodology.
NASWOT (NAS Without Training) examines the network architecture perfor-
mance after being trained on a single minibatch and accurately predicts its performance
after full training. The local linear maps of network architectures that perform best will
be independent across data point samples. Equivalently, a well-performing model must
be able to distinguish between the local linear operators associated with each data point
in order to model a complex target function. A poor-performing network architecture’s
operators will ‘activate’ similarly for different images, and thus the image inputs are
difficult to disentangle (their respective activation matrix will appear denser - Fig. [3).

Their pipeline is able to achieve near-state-of-the-art accuracy in mere seconds.

3.3.3. Performance-Prediction Strategy Drawbacks

Of course, performance prediction strategies are not without their limitations. Mok
et al. suggest that several prediction-based strategies are inherently flawed. Es-
timating network performance at initialisation often employs the neural tangent kernel
(NTK), on which Frobenius Norm (utilized by RMI [93]) and other common tech-
niques are based. They demonstrate that modern DNN violate assumptions necessary
to adopt NTK, because they evolve non-linearly during training.

FreeRea [94] also acknowledge the limitations that NTK methods yield, and build
upon the earlier genetic REA algorithm by independently mutating parent cells
and then uniformly sampling the resultant cell genes to better explore the network
architecture space. FreeRea assigns a more appropriate fitness score to a given net-

work architecture cell by adopting a modified Synflow [128] approach to evaluate the
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summed contribution of network architecture weights, wherein the weights are scaled
down logarithmically (‘LogSynflow’). Additionally, architectures with skip connec-

tions are in fact encouraged to yield practical deep network architecture training.

3.3.4. Bayesian Optimisation

In general, Bayesian Optimisation (BO) considers a function f(z) that is complex
or unknown (thus behaving as a “black box”). In the context of NAS, we can denote
f as the performance of a given architecture x. To optimise f, we require some kernel
(k) that considers the distance between two inputs (z, x1). Furthermore, we require an
acquisition function a( f, k, ), a measure of an expected loss of evaluating f at x, given
a kernel function k. For clarity, let us consider the architectures x, x1, where k(x, z1)
is very small (i.e. the architectures are similar). If f(x) is high (i.e. architecture
x performs well), we would be wise to compute f(x1), as architecture z; is likely
to perform well. If f(x) is low (i.e architecture x performs poorly), we should instead
compute f(z3), for some alternative architecture xo. There is litte benefit in computing
f(z1) as it will be similar to f(x), while computing f(z2) enables better exploration
of the entire search space. Provided that a is more easily computable than f, a BO
approach to architecture selection via maximising a should be efficient.

Indeed, NASBOT [78] first adopted BO strategy for NAS, utilising expected im-
provement as the acquisition function. The authors define k£ as the OTMANN distance,
a measure of the structural similarities between two architectures, weighted by their
computational contribution to the network as a whole. This distance is computed effi-
ciently via optimal transport algorithm [[129].

Auto-Keras [79] adopts an alternative BO configuration, using an upper-confidence
bound acquisition function, with the edit-distance as kernel definition. This can be
formulated as an approximate dynamic programming algorithm that can be efficiently
minimised under an equivalent bipartite graph matching problem. BayesNAS [80]

instead adopt an entropy-based acquisition function with an incorporated hierarchical
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ARD prior [130].

BANANAS [81] identifies the drawbacks with rudimentary BO strategy, given the
resource-intensive distance function computation. Instead they propose using a predic-
tor network to remove the need for a distance function entirely. Consider an architec-
ture encoding as a binary mask of the entire search space, where there is a 1 if that
path (the series of operations from input to output) exists in the architecture. Given
this path-encoding representation of an architecture, a neural network can predict its
performance. By taking an ensemble of m predictors, the mean and standard deviation
of the m predictions for an input architecture can be computed. Mean and standard
deviation are inherent to Bayesian Optimisation acquisition functions, and improving
their reliability improves overall optimisation performance. The authors determined
upper-confidence boundacquisition function with a mutation optimisation strategy to

be the best BO operation configuration.

4. Object Detection

In general, NAS towards more complex tasks than image classification, such as
detection and segmentation is less studied. Within these domains, there is an under-
standable focus on architecture space definition to capture the additional requirements
for object detection and segmentation heads. Most strategies presented below can be
combined with the advancements highlighted in the image classification domain above.
4.1. Searching for Backbone Architectures

DetNAS [82] identify the unsuitability of older NAS strategies (notably non-gradient
based) when searching for detection backbone architectures due to the level of gran-
ularity required, and thus the necessity to pretrain architectures on ImageNet. They
propose DetNAS instead, which, much like gradient-based NAS strategies, generates
a super-network that requires only one pretraining cycle on ImageNet [[L00]. In con-
trast to gradient-based strategies however, only one path is sampled during each itera-

tion, and thus proposed architectures have entirely independent weights. Furthermore,
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super-network training and search space traversal is decoupled, allowing convergence
to be achieved by an evolutionary algorithm rather than gradient-based.

SpineNet [83]] employs a reinforcement learning (RL) NAS strategy to determine
backbone architectures for object detectors. However, they posit that common leading
scale-decreased backbones (e.g. ResNet [131]) may be unsuitable for detection archi-
tectures due to the loss of spatial information within down-sampling. This information
may not be fully recovered by subsequent decoder networks, including FPN [132].
As such, generated architectures contain a (fixed, scale-decreased) stem followed by
a learned scale-permuted network consisting of several blocks. Each block does not
necessarily need to connect to a subsequent block corresponding to the next lowest res-
olution (scale-decreasing). Instead, blocks can connect to blocks of varying resolution,
upsampling or downsampling as required (see Fig. [6).

NATS [84] considers a gradient-based NAS approach for object detection backbone
architectures. In order to achieve the required level of granularity, lest found backbone
architectures generate too coarse features [82], NATS further decomposes the search
space beyond path-level strategies to the channel-level. Each channel at each operation
is assigned its own parameter, allowing the channel search space to be continuous for

gradient search.
4.2. Searching for FPN and Detection Head Network Architectures

Conversely to backbone search, [[85}186] consider the FPN network architecture as
the search space within their NAS frameworks. NAS-FPN [85] employs reinforcement

learning to iterate over the FPN search space in their framework. They propose a
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‘general’ FPN-block, whereby two feature layers are sampled and pooled to generate
a new feature layer, that is itself samplable. The authors further propose a simple but
effective strategy to realise the accuracy-speed tradeoff, whereby the FPN architecture
can be stacked since its input and output are feature layers of identical scales.

Auto-FPN [86] opts for a gradient-based NAS framework to generate detector ar-
chitectures. Similar to NAS-FPN [85]], FPN network architecture is generalised within
the search space, but the generalisation is further extendable to PANet [[133]] and SSD
[[134] style pyramidal network architectures. Furthermore, the authors consider a head
cell within the search space, to optimise classification and bounding box regression.
Their Auto-FPN network architecture yields less accurate results than the concurrent
work [85], but with a fraction of the resources required during training.

Aligning motivations with Auto-FPN, NAS-FCOS [87]] benefits from searching for
both a competitive FPN as well as bounding box regressor head. They are able to
achieve state-of-the-art performance by generating network architectures based upon
the FCOS [135] anchor-free network architecture space. An FPN architecture is dis-
covered while the regressor head is frozen. A regressor head is then searched for, using
the found (frozen) FPN architecture. The top 10 searched head architectures are then
selected for full training to determine the best single FCOS-based network architecture.

OPANAS [88]] applies the NAS strategy when searching for an optimal FPN archi-
tecture within visual object detection. Representing a node as a feature map, and edges
between nodes as possible information paths, an FPN super-network can be constructed
as a DAG akin to commonplace NAS solutions. Here, the information paths repre-
sent different pyramid architectures (top-down, bottom-up, scale-equalising, fusing-
splitting, skip-connect and none). The optimal aggregation of information paths can
be derived from a trained super-network through an evolutionary algorithm, yielding a

final optimal FPN architecture.
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Figure 7: Examples from Auto-DeepLab [90] paper of the different network architectures that can be cap-
tured by their search space. Spatial resolution only ever doubles, halves, or remains unchanged in a given
layer. Maximum downsample rate is 32. (a) DeepLabv3 [146]. (b) Encoder-decoder architecture, success-
fully deployed within semantic segmentation by Conv-Deconv [147]. (c) Stacked hourglass [[148] architec-
ture.

5. Image Segmentation

The image segmentation domain poses a new style of problem compared to previ-
ous vision-based challenges, namely capturing long-range dependencies between fea-
tures for dense (pixel-wise) prediction [89}91]. Common solutions include scale image
pyramids [[136, 137} [138]], encoder-decoder networks [139, (140l [141]] and atrous con-
volution resampling (142, [143\ [144]).

DPC [89] constructs a novel search space for dense prediction, encapsulating both
spatial pyramid pooling and atrous separable convolutions to capture the aforemen-
tioned multi-scale contexts. With a random sampling search strategy, they are among
the first to adapt NAS towards image segmentation, outperforming hand-crafted archi-
tectures for scene parsing, person part segmentation and semantic image segmentation.

Auto-DeepLab employs a different strategy wherein gradient-based search is adopted
to find cells optimised for dense prediction. In addition to searching for optimal convo-
lutional fabric [145] cells, the hierarchical network level search space is also traversed.
High level spatial resolutions are thereby preserved as the inter-connectedness of a
searched cell is not pre-defined, but explicitly searched for (Fig. [7).

DCNAS [91]] builds upon the trellis search space [90]], constructing a densely con-
nected search space. By using a fusion module that efficiently aggregates semantic
information between layers, the resource-intensity during search is minimised such
that the same dataset can be used for the NAS search and evaluation phase, minimizing

the optimisation-gap (see [40, 58]).
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EDNAS [51] present a multi-task scene-understanding (image segmentation, depth
prediction, and surface-normal estimation) NAS algorithm that focuses on the gener-
ation of network architectures that are optimal with respect to latency for given hard-
ware. By designing a search space best suited to the placement of Inverted Bottleneck
[[149]] blocks within an EfficientNet [150] backbone, an evolutionary search algorithm

[127]] can find architectures optimised for edge platforms.

6. Discussion

Clearly, there is a definitive bias towards NAS for image classification over object
detection and image segmentation. This can be attributed to the complexity of image
classification architecture, which until recently, could be more easily trained end-to-
end. As such, these CNN architectures are well suited for architecture search within
the NAS pipeline. While extending CNN architecture search to backbones to object
detection and image segmentation is possible, the result is not as impressive. Indeed,
suitable backbone architecture for these problems is only half the challenge. However,
with the rise of object detection transformer architecture, which achieves very high
performance on common datasets, and whose modularity is well suited towards NAS,
one can expect this phenomenon to disappear. It is unsurprising therefore, that NAS for
transformers is receiving increased popularity in recent literature [46, 66]. We further
note that implementing the architecture space for NAS in line with the modifications
implemented within ConvNeXt architecture [3]], which is capable of state-of-the-art re-
sults in both image classification and object detection, is a strong candidate for future
research within the NAS domain. Many of the modifications proposed in ConvNeXt
alter the architecture to remove any inductive bias stemming from local pixel relation-
ships in place of long-distance pixel relationships. The same architecture changes can
be readily applied to the NAS architecture space.

The focus on architecture space traversal is evident. Conversely, even in the case of

image classification, the generation of resource-efficient architecture for which NAS is
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so well-suited is limited. Where such strategies do exist [42, 46| 70, 71, [73]], only [46]
considers architecture beyond pure CNN or domains other than image classification.
Since NAS can ultimately be reduced to a ranking of architectures, and thus introduc-
ing resource constraints into the ranking is both sufficient and efficient, this pattern is
unfounded and there is much benefit to be gained here.

Finally, we note that dataset optimisation is hardly considered within NAS frame-
works, with the exception of Pi-NAS [57]]. Hard example mining and curriculum learn-
ing, which are prevalent within conventional network training, receive no attention
within NAS (excluding CNAS [32] which utilises a curriculum for preparing the archi-
tecture space rather than the dataset). Considering a given dataset is often iterated over

more times within NAS than manual training, there is no justification for this.
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