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1. Introduction

Following the emergence of big data and the ever-increasing public availability of

datasets, each with tens of thousands of data points, research within the deep learning

domain is accelerating [1]. Consequently, there are two key factors that need to be

addressed. Firstly, the process by which we present data to the deep learning model

is paramount. It is not uncommon for models to be trained for thousands of epochs,

and thus any superfluous data within the dataset will have an increasingly negative

impact on training speed. This phenomenon has given rise to hard example mining [2],

which attempts to identify hard images (i.e. images that contribute highly to loss, upon

which the model performs poorly). By only considering these hard images, we can not

only sample from a minimal dataset, therefore minimising the duration of a training

epoch, but also reduce the number of iterations required for model convergence, as the

contribution of each image sample is maximised in every iteration.

Similarly, the images sampled by the model in any given training iteration are con-

trolled via curriculum learning [3] and self-paced learning [4]. Contrary to hard ex-

ample mining, in which commonly only a subset of the global dataset is considered

during the entire training process, curriculum learning and self-paced learning forces

the initial iterations to sample one fraction of the global dataset, and subsequent iter-
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Figure 1: Overview of the DDS-NAS search phase. After a given training iteration, we determine whether a
sufficient percentage of the data in the current subset is correctly classified, according to some a priori mas-
tery threshold. If the subset has been mastered, we reformulate it dynamically. Hard images in the current
subset are retained, according to some a priori hard-ness threshold, while easy images are replaced with the
most different image from the same class. To determine the most different image, we employ an (approxi-
mate) furthest-neighbour kd-tree whereby each image is represented by the auto-encoded representation of
its features within the latent space.

ations to sample from different fractions, until the entire global dataset is considered.

Generally, curriculum learning introduces harder images (pre-defined by prior knowl-

edge) as training progresses, while self-paced learning determines the current model

performance as feedback to the controller to determine which images to sample next.

The second challenge arising from data accessibility is the evolution of the archi-

tecture search space. As research within the domain continues, newer, and often more

complex network architectures are presented. To overcome this notion Neural Ar-

chitecture Search (NAS) has emerged, which automatically traverses the architecture
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search space for a given task and generates models that are competitive alongside hand-

crafted, state-of-the-art models [5]. We can divide the NAS domain into evolutionary,

reinforcement-learning, prediction-based, and gradient-based NAS frameworks. This

paper primarily considers gradient-based NAS frameworks.

More precisely, the seminal gradient-based DARTS [6] framework constructs a

super-network, in which each layer consists of all possible operations in the search

space, followed by a softmax layer across said operations, such that operation selection

can be represented as (continuous) operation-magnitude optimisation. After training

the super-network, the best-performing subset of operations are extracted, thus formu-

lating a cell (sub-network). A series of these cells is then trained to generate a final

‘searched’ model, fine-tuned upon a given challenge dataset.

We propose a strategy that incorporates a novel combined hard example mining

and curriculum learning approach to enable Dynamic Data Selection (DDS) within a

NAS framework, denoted as DDS-NAS. By using image similarity as a proxy metric

for image difficulty (on an easy to hard performance axis), we can select hard images

for processing within a given NAS training iteration in logarithmic time without com-

promising image diversity (Fig. 1). This process allows us to significantly improve

the NAS search phase speed. Whilst this paper specifically addresses image datasets,

there is no reason not to apply identical techniques to other application domains such

as natural language processing (NLP).

On this basis, our main contributions are as follows:

– a novel framework, DDS-NAS, that incorporates both hard example mining and

curriculum learning in order to minimise the training duration of a given epoch

within NAS, demonstrated to be effective across a variety of commonplace NAS

approaches (DARTS [6], P-DARTS [7] and TAS [8]).

– an efficient and novel approach for hard example mining within the image do-

main, that considers image dissimilarity an alternative metric to hardness, and
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employs an autoencoder architecture that enforces an image similarity embed-

ding in latent space. This yields efficient dissimilar image look-up from a kd-tree

structure.

– generation of models in a manner intrinsically robust to biased datasets, and 10

times quicker than existing NAS techniques, whilst retaining competitive, near

state-of-the-art accuracy with minimal memory footprint over common bench-

marks.

2. Prior Work

In this section we introduce the related NAS, hard example mining, and curriculum

learning approaches, from which we draw our methodology. We restrict our NAS

literature survey to only a brief overview of NAS techniques, since DDS-NAS can

be deployed upon any NAS approach that iteratively processes images (evolutionary,

reinforcement-learning, and gradient-based). Through this review of the literature, we

highlight our contribution to the field, outlining the ways in which our framework

works alongside the current NAS approaches to optimise performance and reduce com-

putational requirements.

2.1. Neural Architecture Search

With the rise of NAS, a multitude of recent literature has addressed the scalability chal-

lenge which occurs due to the resultant large search space and training cost. Following

the seminal work of Zoph et al. [9] and other reinforcement learning [10, 11], and

evolutionary [12, 13] approaches to NAS, weight-sharing techniques [14] reduce the

need to train each architecture in the search space separately.

2.2. NAS Strategies

Gradient-based approaches [6, 7, 15] enable the application of stochastic gradient

descent and other well-used deep learning techniques by relaxing the search space so
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that it is continuous, thereby drastically improving the convergence rate of the archi-

tecture. One-shot NAS approaches employ the weight-sharing super-network training

stage of DARTS, with an alternative sampling strategy, tending to consider only one

path through the super-network in a given training iteration [16].

Progressive DARTS (P-DARTS) [7] address the optimisation gap within DARTS

between the sub-network and final model. This is achieved by simultaneously limiting

the prevalence of skip-connections within a generated cell and by progressively reduc-

ing the operation search space available to the super-network. This in turn enables

progressively increasing network depth.

Network Pruning via Transformable Architecture Search (TAS) [8] crafts a loss

function to directly minimise the complexity of the searched network. To this end,

both the width (number of channels in a layer) and the depth (number of layers) of the

network are also searched. By employing the knowledge distillation algorithm from

[17], weights from the fully trained super-network can be transferred to the ‘pruned’

searched network.

2.3. Curriculum and Coreset Sampling Within NAS

CNAS [18] employs a curriculum learning framework within NAS architecture, in

order to slowly introduce new operations to the NAS controller search space, allowing

the model to successfully master harder tasks as training progresses. Overall, network

topology is the primary focus for contemporary NAS solutions [8, 18, 7]. By contrast,

only minimal consideration of the dataset presented within the NAS pipeline is present

in the literature.

CLOSE [19] uses curriculum learning to modify the sharing extent. There is no

effort to reduce the training dataset size, but image hardness and uncertainty (which

can be calculated from a range of different sub-network outputs) is factored into the

loss computation.

Peng et al. [20] introduce negative samples within NAS training, drawing from
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the benefits of contrastive learning. Core-set Sampling [21] select a small subset

of the data space for training the NAS super-network via the greedy k-center algo-

rithm. ADAPTIVE-NAS [22] compares different core-set sampling algorithms for

PT-DARTS [23], including adaptive sampling, in which the training set is periodi-

cally updated using GLISTER [24]. While their work is most similar to ours, there

is no effort to consider image hardness, and is thus unable to utilise any benefits of

curriculum learning. Moreover, only one search algorithm is evaluated with core-set

selection. However, the core-set selection algorithm depends upon embeddings that are

well aligned with the training data, much like DDS-NAS (Table 5).

To our knowledge, this paper represents the first approach to jointly employ online

hard example mining and curriculum learning during NAS learning to optimise both

model performance and reduce overall NAS computation requirements. With the va-

riety and quickly evolving nature of NAS strategies, it is imperative that our method

can be deployed alongside any existing NAS approach. Our work is thus the first to

utilise a core-set approach in conjunction with a variety of existing NAS approaches

and different architecture search spaces. Our approach is able to accelerate training for

even the oldest NAS methods, for which training speed is a known drawback [16].

2.4. Curriculum Learning and Hard Example Mining

Graves et al. [25] posit the need for a surrogate measure of learning progress to inform

the curriculum controller, rather than model accuracy. They introduce several different

measures, identifying the best as prediction gain (instantaneous loss for a sample) and

gradient variational complexity (using the direction of gradient descent to measure

model complexity).

Hachoen and Weinshall [4] suggest instead to use a scoring function to generate the

curriculum. The scoring function ranks images within the dataset by difficulty through

testing either the same model (pre-trained without curriculum learning) or a different

model. Harder images are introduced to the model over time. Weinshall et al. [26]
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further evolve this process to consider image difficulty in relation to task difficulty

(e.g. fine detail differentiation is harder than coarse detail differentiation, which can

for instance be trivially approximated with hierarchical datasets). Shrivastava et al.

[27], on the other hand, in their hard example mining paper, rank the images in order

of difficulty at the time of training to dynamically generate a mini-curriculum at each

iteration.

Kumar et al. [28], in their work on self-paced learning, instead monitor image dif-

ficulty as either the negative log-likelihood for expectation-maximisation or the upper

bound on risk for latent structural support vector machines. Jiang et al. [29] incorpo-

rate both self-paced learning and curriculum learning into a single framework. That is,

the curriculum is pre-defined by some expert, but takes into account the feedback from

the model (the learner) when selecting which images to propose to the network during

training.

Finally, Matiisen et al. [30] introduce the concept of mastery into the curriculum

learning framework. In its simplest form, mastery is reaching a performance threshold

for the model, identified by prior expert knowledge. The model is presented with im-

ages from a global dataset, but with a higher probability of sampling images from the

current curriculum subset. As the model masters this subset, the probability of sam-

pling these images decreases, while the probability of sampling the next curriculum

subset increases.

If we consider these studies concurrently, it is evident that curriculum learning and

hard example mining both greatly benefit the deep learning optimisation process, and

the combination of the two does so even more. We therefore uniquely propose to

employ such methods within NAS, specifically, levying mastery from [30] in tandem

with our own hard example mining approach reminiscent of the ‘instructor—student

collaborative’ learning paradigm [29].

The work of Cazenavette et al. [31] builds upon well-explored dataset distillation
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techniques [32]. By optimising the l2 loss of the parameters of a network trained on

only 50 images per class, compared to optimal network parameters (i.e. parameters

induced by training with 5000 images per class), they are able to achieve reasonable

performance (71.5% on CIFAR-10 [33]). On this basis, we can deduce that training

on a fraction of images yields a promising research direction, to which our method

pertains without such loss in performance.

3. Proposed Approach

In this section, we detail the process by which our proposed DDS-NAS training strat-

egy dynamically samples the dataset in an online fashion within the NAS cycle (Fig-

ure 1). DDS-NAS is subsequently deployed across three leading contemporary NAS

frameworks (DARTS [6], P-DARTS [7], and TAS [8]).

Firstly, we define some key terms to which we will refer in our subsequent discus-

sion:

• hard or hard-ness: a given example within the dataset at the current NAS training

cycle iteration is defined as being hard if the output of the current model corre-

lates poorly with the ground truth label for this example and hence contributes

significantly to the current loss value for the model (i.e. it is either misclassified

or classified with a low confidence score in the context of image classification).

• easy: the converse of hard, where for a given example the output of the current

model correlates strongly with the ground truth label for this example and hence

contributes less significantly to the current loss value for the model (i.e. correctly

classified with a high confidence score in the context of image classification).

• mastery: a measure of when a given a priori performance threshold is reached

on the current data subset such that the number of easy examples in the dataset

is high with regard to the current model.
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3.1. Curriculum Learning Within NAS

To formulate an unbiased subset of the global dataset, we use the hard example mining

process detailed in Section 3.2. At every training iteration within the NAS search phase,

we present such a subset to the NAS model. Following the success of [30], we in fact

present the same subset until it has been mastered, according to some a priori mastery

threshold (see Section 4.1). Only when the NAS model masters a subset do we sample

a new set of examples from the global dataset. If the mastery threshold is very low,

this subset of data will change often. If the mastery threshold is very high, a given

subset is presented to the NAS model for several successive iterations, and a smaller

portion of the global dataset is sampled throughout the entire training process. Akin

to the restriction with P-DARTS [7] whereby only network parameters (i.e. weights)

are updated and not architectural parameters within the first 10 training epochs, we

similarly restrict DDS-NAS from resampling the dataset in this way for the first 10

epochs of NAS training.

3.2. Dynamic Data Selection

In order to both minimise the data subset used in each NAS iteration without perfor-

mance degradation and facilitate efficient inter-iteration dataset resampling, we require

a low-overhead process by which we can dynamically select new data examples.

From the initial NAS training iteration, and the immediate subsequent iterations

thereafter, model performance can be considered near-random.1 As such, we necessar-

ily depend upon a resampling process independent of model performance, and hence

propose the use of dataset example similarity as an alternative measure to relative hard-

ness between samples. The intuition is that a model will perform poorly on examples

with greater dissimilarity to those upon which it has already been trained. By using a

resampling process independent of model performance, we do not need to compute the

1Noting that Deep Image Priors [34] indicate that untrained model performance in fact correlates to
architecture design.
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forward-pass of the model on all image samples in the entire dataset per hard exam-

ple mining iteration, an approach commonplace among existing hard example mining

approaches. This significantly reduces the computational complexity of DDS-NAS.

Given the need to perform efficient one-to-many feature distance comparisons via

an online approach, we construct a series of efficient furthest-neighbour kd-tree struc-

tures from the chosen N-dimensional feature representations of each example in our

global dataset. In order to maintain a balanced data subset in the presence of dynamic

reselection, we construct one such kd-tree structure per class label in the dataset, re-

sulting in m trees for m dataset classes. In this way we can facilitate like-for-like class-

aware resampling and hence maintain dataset balance throughout the NAS training

cycle. This strategy resembles undersampling, which has been shown to be effective

for dealing with biased datasets [35], and is a significant advantage of our approach.

To enable efficient look-up within our kd-tree structure, we require a sufficiently

low dimension N of our feature representation such that the approximate furthest neigh-

bour algorithm does not collapse [36]. As the dimensionality of image data is high (i.e.

N = 28× 28 in case of MNIST [37], and larger for more complex datasets), we instead

propose using an additional autoencoder architecture to construct an image similarity

embedding with a much lower dimension (N = 8 for easier MNIST and Fashion-

MNIST datasets [38], N = 32 for CIFAR-10).

In general, we find that contemporary state-of-the-art autoencoder architectures

[39] employ skip-connections between the encoder and decoder sub-networks to facil-

itate improved image reconstruction. However, in this instance, such skip connections

are detrimental to the performance of the encoder network in terms of constructing an

encoding at the bottleneck of the encoder-decoder architecture (our embedding) that

maximally captures the highest level of feature detail within itself. On this basis, we

employ the proven autoencoder architecture from GANomaly [40] as it is one of the

most successful encoder-decoder architectures employed for encoded image discrimi-
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nation, predating the wider move to the use of skip-connections in the field [39].

We require that the use of this encoder architecture results in a compact feature

embedding that retains the property of spatial similarity such that similar images have

similar embeddings within the latent space and vice versa. This property must not

come at the expense of image reconstructability. Otherwise, we cannot be confident

that a given embedding represents a given image. In other words, there would be

no correlation between embedding space dissimilarity and image space dissimilarity.

Given reconstructability without similar images clustering within the embedding space,

we cannot guarantee that the correlation is strong.

To enforce these properties, we discovered that contractive loss [41] is sufficient

for easier datasets, while harder datasets require a combined triplet margin ranking

loss with MSE reconstruction loss, weighted via Kendall Loss [42]. Subsequently,

we can thus order images by their dissimilarity within our furthest neighbour kd-tree

structures. See Table 1 for a lightweight autoencoder training configuration sufficient

for each dataset.

During a given NAS training iteration, we measure the hard-ness of each example

image in the current data subset based on cross-entropy loss, following our earlier

definition of hard and easy examples. To subsequently update our data subset in a

dynamic manner, we first retain the images that are hard when averaged across the

most recent epochs, according to some a priori hard-ness threshold (see Section 4.1).

Secondly, by selecting the kd-tree from our set that is associated to the class label

of each image in the current data subset below the hard-ness threshold (i.e. the easy

images), we can then identify the most dissimilar image of the same class in the global

training set in O(log(n)) time. We can then use this to replace the easy image within

the data subset. This dynamically updated training data subset will then be used for the

next NAS training iteration. A detailed example can be found in Appendix A.

Our overall pipeline is presented as follows: once the previous data subset has been
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mastered by iterative NAS training, we dynamically formulate a new balanced subset

of the global training dataset based on (a) the retention of images that are considered

hard, and (b) the replacement of images that are considered easy with dissimilar images

of the same class to retain dataset balance (Fig. 1). Pseudo-code to illustrate the overall

pipeline with time complexity analysis can be found in Appendix B, which highlights

the potential search speed efficiency that DDS-NAS affords.

Figure 2: TSNE visualisation of clustering of autoencoded image feature representation within latent space.
Our autoencoder preserves the property that similar images have similar encodings for MNIST (a), Fashion-
MNIST (b), and CIFAR-10 (c). However, our compact embedding is unsuitable for fine-grained image
classification such as FGVC-Aircraft (d), which is a known limitation of autoencoders.

4. Experimental Setup

We detail our experimental setup for DDS-NAS deployment across the Differentiable

Architecture Search (DARTS), Progressive DARTS (P-DARTS) and Network Pruning

via Transformable Architecture Search (TAS) NAS frameworks. This setup is used to

demonstrate the performance of our proposed approach with several image classifica-

tion datasets.
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Dataset
Autoencoder
Architecture

Bottleneck
Embedding

Dimension N
Loss Function

MNIST GANomaly 8 Contractive Loss
Fashion-MNIST GANomaly 8 Contractive loss

CIFAR-10 GANomaly 32
Triplet loss and
MSE loss with

Kendall Loss Weighting

Table 1: Suggested autoencoder training configuration parameters for each dataset to yield a sufficiently
lightweight architecture that can generate low-dimensionality embeddings.

4.1. NAS Configuration

Unless otherwise stated, all employed NAS frameworks adopt the same common con-

figuration using Adam optimisation [43] with initial learning rate lr = 3e−4, weight

decay wd = 1e−3, and momentums β1 = 0.5 and β2 = 0.999 (P-DARTS uses lr =

6e−4,wd = 1e−3, TAS uses lr = 1e−4). For weight optimisation for the NAS-derived

architectures themselves, we use an SGD optimiser with wd = 3e−4, and momentum

β = 0.9 (P-DARTS uses wd = 5e−4). Additionally, for DARTS we employ a Cyclic

Learning Rate Scheduler with base lr = 0.001, max lr = 0.01, and step size up = step

size down = 10. We set lr = 0.01 when the previous dynamically selected data sub-

set is mastered, and an updated data subset is introduced. Therefore, the updated data

subset is learned quickly and is then ‘fine-tuned’ as with the previous subset. There

is precedence for such an approach in SGDR [44], in which the learning rate is peri-

odically reset to a higher value before the learning rate decay is reapplied. P-DARTS

and TAS both adopt Cosine Annealing Learning Rate Scheduler with lr = 2.5e−2 and

lr = 0.1e−2 respectively. We select the ResNet-110 architecture for TAS kd-teacher

training. The models are implemented using PyTorch [45] (v1.6.0, Python 3.6.9).

Performance of DDS-NAS deployed across each NAS framework is presented in

terms of both Top-1 accuracy and parameter count (complexity) of the optimal NAS-

generated architecture, together with the computational effort of the NAS search phase

(in GPU days) across all three datasets.
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Experimentation indicates that our NAS framework is generally insensitive to a

priori thresholds that do not need to be exhaustively searched. A subset-size of 100

is sufficient for the easier MNIST [37] and Fashion-MNIST [38] tasks, and 1000 for

CIFAR-10 [33]. Adopting a high hardness threshold (hard-ness threshold > 0.8) across

all datasets and all NAS strategies enables the searched network architecture to formu-

late a thorough feature representation for image classification. The best network archi-

tectures are discovered with a mastery threshold ≈ 0.5. P-DARTS and TAS learn deep

representations for images slower than DARTS. This can be attributed to the additional

tasks done alongside reducing classification loss, wherein P-DARTS progressively re-

stricts the search space while increasing architecture depth, and TAS minimises for net-

work architecture complexity. Conversely, DARTS can afford a lower mastery thresh-

old (≈ 0.15) for the easier MNIST and Fashion-MNIST tasks, but the performance

gain is marginal. All presented results use the same hardness (0.85) and mastery (0.5)

thresholds to ensure fairness.

4.2. Hard Example Mining

The GANomaly autoencoder [40] used to encode the images into their latent space

representation is trained with Contractive Loss [41] for 30 epochs, with bs = 8, and

Adam optimiser with momentums β1 = 0.9 and β2 = 0.999, wd = 0, lr = 1e−3. For the

CIFAR-10 task, the autoencoder is instead trained with combined triplet margin loss

[46] and MSE reconstruction loss, weighted under Kendall Loss [42].

5. Evaluation

Having validated the feature representation embedding that underpins our dynamic data

selection via hard example mining (see Figure 2), we present out evaluation in terms of

DDS-NAS comparison to contemporary state-of-the-art approaches, with supporting

ablation studies.
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Dataset NAS Approach
Top-1 Accuracy (%) ↑

DARTS /
P-DARTS / TAS

Params (M) ↓
DARTS /

P-DARTS / TAS

Search Cost (GPU Days) ↓
DARTS /

P-DARTS / TAS
M

N
IS

T Original 99.75 / 99.26 / 99.27† 0.66 / 3.68 / 1.00 0.51 / 1.89 / 0.28

DDS-NAS 99.78 / 99.17 / 99.30† 0.75 / 3.51 / 0.81 0.030 / 0.070 / 0.021

Fa
sh

io
n

M
N

IS
T Original 95.33 / 93.42 / 95.09† 3.27 / 4.04 / 0.94 0.63 / 1.98 / 0.27

DDS-NAS 95.48 / 93.04 / 95.08† 3.44 / 4.23 / 0.83 0.030 / 0.078 / 0.031

C
IF

A
R

-1
0

Original 97.17 / 96.50 / 93.89 3.16 / 3.43 / 0.85 1.78 / 0.65 / 0.26

DDS-NAS 96.57 / 95.07 / 93.12 3.72 / 4.13 / 1.06 0.36 / 0.095 / 0.040

Shapley-NAS [47] 96.96 3.60 0.36

SNAS [48] 97.15 2.85 1.83

DenseNet [49] 94.23 7.0 –

Table 2: Accuracy, memory footprint, and (search-phase) training cost of final generated model from DDS-
NAS deployed upon DARTS, P-DARTS, and TAS, compared to their original implementations and others.
† indicates results without kd-teacher training owing to the lack of available teacher models for MNIST and
Fashion-MNIST datasets.

5.1. Neural Architecture Search

Table 2 presents the performance obtained by the final model generated by DDS-NAS

with respect to each dataset under consideration. Across all cases, the performance

of our generated models is competitive with the state of the art, with minimal to no

impact on generated model size. Moreover, across all cases, we substantially lower the

computational efforts required for NAS (0.07 GPU days compared to 1.89 in the case

of P-DARTS for MNIST, 27 times quicker)2. Since we can determine a replacement

image for our dynamic subset in average case O(log(n)) time, we are able to reduce the

search phase training cost by one order of magnitude over state-of-the-art results.

Without loss in performance, our hard example mining method yields discrimina-

tive architectures that can be transferred to CIFAR-100 [33] and ImageNet [50] (Table

3). However, reproducibility presents a particularly significant problem within the NAS

domain [51] and TAS ImageNet performance is considerably lower than the literature

2Still an order of magnitude faster even after factoring in the time taken to train the autoencoder
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CIFAR-100

NAS Approach Top-1 Accuracy (%) ↑
DARTS / P-DARTS / TAS

Params (M) ↓
DARTS / P-DARTS / TAS

Original 81.33 / 80.58 / 71.72 2.75 / 3.49 / 1.15

DDS-NAS 82.64 / 75.45 / 70.47 3.80 / 4.24 / 1.15

Shapley-NAS 83.42 3.66

DenseNet 76.21 7.0

ImageNet

Original 73.30 / 75.72 / - 4.51 / 4.94 / -

DDS-NAS 76.26 / 75.63 / - 6.14 / 5.68 / -

Shapley-NAS 75.52 5.14

DenseNet 74.98 7.0

Table 3: Accuracy and memory footprint of CIFAR-10 searched models transferred to CIFAR-100 and
ImageNet

reports. DDS-NAS-TAS performance is omitted for fairness. Whilst our technique is

demonstrated upon commonplace NAS approaches (DARTS, P-DARTS, TAS) it could

equally be deployed on top of more recent advancements [47, 15, 16], further minimiz-

ing any difference in performance.

5.2. Ablation Studies

To validate our proposed approach, we compare the performance of DDS-NAS to se-

lected NAS frameworks, both: (a) without dynamic data selection in order to ablate

the contribution of our combined hard example mining and curriculum learning strat-

egy; and (b) with an untrained autoencoder to ablate the contribution of the image-

dissimilarity based hard example mining strategy.
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Dataset NAS Approach

Top-1 Accuracy
(Search Phase) (%) ↑

DARTS /
P-DARTS / TAS

Top-1 Accuracy
(Final) (%) ↑

DARTS /
P-DARTS / TAS

Params (M) ↓
DARTS /

P-DARTS / TAS
M

N
IS

T

DDS-NAS 94.00 / 78.89 / 44.89 99.78 / 99.17 / 99.30 0.75 / 3.51 / 0.81

Original framework with
dataset size 100 78.28 / 70.81 / 39.24 94.43 / 98.69 / 99.18 0.70 / 4.54 / 0.53

DDS-NAS with
untrained autoencoder 92.28 / 78.76 / 51.96 95.28 / 98.78 / 99.21 0.75 / 3.11 / 1.05

Fa
sh

io
n-

M
N

IS
T

DDS-NAS 72.92 / 65.71 / 32.71 95.48 / 93.04 / 95.08 3.44 / 4.23 / 0.83

Original framework with
dataset size 100 56.27 / 58.16 / 35.66 91.69 / 90.03 / 94.61 3.47 / 4.69 / 0.46

DDS-NAS with
untrained autoencoder 69.49 / 64.47 / 39.12 92.04 / 91.52 / 94.87 3.48 / 3.92 / 0.93

C
IF

A
R

-1
0 DDS-NAS 56.00 / 22.14 / 29.88 96.57 / 95.07 / 93.12 3.72 / 4.13 / 1.06

Original framework with
dataset size 1000 51.02 / 41.70 / 23.81 88.58 / 85.74 / 90.83 3.55 / 4.04 / 0.32

DDS-NAS with
untrained autoencoder 51.10 / 46.59 / 28.21 88.90 / 88.96 / 91.72 3.64 / 4.25 / 0.83

Table 4: Ablation studies: accuracy and memory footprint of models generated by DDS-NAS, models gener-
ated by the original framework with limited data (equivalent to removing hard example mining and curricu-
lum learning), and models generated by DDS-NAS with an untrained autoencoder (equivalent to removing
hard example mining).

5.2.1. Without Dynamic Data Selection

For each dataset, we employ all three original implementations (DARTS [6], P-DARTS

[7], TAS [8]), but with a subset of the data at each training iteration. This is equiva-

lent to omitting both hard example mining and curriculum learning. We use the same

volume of data as adopted by DDS-NAS: 100 randomly selected images for MNIST

and Fashion-MNIST, and 1000 for CIFAR-10. Subsequently, we can determine the

impact of our curriculum learning and hard example mining pipeline. Comparing the

first and second row of the results for each dataset presented in Table 4, it is evident

that DDS-NAS achieves substantially improved accuracy while yielding fractionally

larger architectures in some cases. This behaviour is exhibited in MNIST, where the

original DARTS framework achieves only 78.28% accuracy after the search phase, and

94.43% accuracy after fine-tuning the stacked searched cell (compared to 94.00% and

99.78% respectively for DDS-NAS-DARTS). This performance difference is further
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highlighted with both the other datasets and other frameworks. The final performance

of the original P-DARTS implementation falls behind DDS-NAS across all datasets

(85.74% compared to 95.07% for CIFAR-10, for instance). Interestingly, with hard ex-

ample mining and curriculum learning omitted in this manner, TAS generates smaller

models (0.32M compared to 1.06M for CIFAR-10), but often at the expense of accu-

racy.

5.2.2. Untrained Autoencoder

Figure 3: TSNE visualisation of the clustering of autoencoded CIFAR-10 image feature representation within
the latent space. Training with triplet margin loss with Kendall loss achieves good clustering (left). Training
with contractive loss achieves poor clustering (right).

We ablate the autoencoder-derived feature embedding within our hard example

mining method by replacing the DDS-NAS autoencoder with one that is untrained,

and thus unable to determine the most dissimilar images from a given training data

subset. This can be considered as a process equivalent to curriculum learning without

hard example mining, as the images are effectively randomly sampled. This time, we

compare the first and third row for each dataset in Table 4. Evidently, the models gener-

ated by DDS-NAS with an untrained autoencoder are significantly worse (for instance

92.04% compared to 95.48% upon Fashion-MNIST by DDS-NAS-DARTS). On this

basis, we can therefore conclude that DDS-NAS necessarily requires a suitable hard

example mining approach, for which our image similarity strategy is sufficient.

Furthermore, an autoencoder that achieves good reconstruction but a mediocre
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Reconstruction ✓ ✓ × ×

Clustering ✓ × ✓ ×

Top-1 Accuracy (%) ↑ 96.57 95.29 94.94 88.90

Table 5: Accuracy of DDS-NAS-DARTS employing autoencoders with different capabilities on CIFAR-10.

clustering of embedded features is inadequate for DDS-NAS (Fig. 3, Table 5). Bad

clustering and thus ineffective hard example mining yields inferior classification ac-

curacy (95.29%) compared to hard example mining with good clustering (96.57%).

Similarly, sufficient clustering but poor reconstruction is detrimental to DDS-NAS

(94.94%). Lack of both properties yields significantly worse performance (88.90%),

wherein there is no correlation between embedding space dissimilarity and image space

dissimilarity at all.

By comparing row two (neither hard example mining nor curriculum learning) and

row three (curriculum learning but not hard example mining) for each dataset in Table

4, it is clear that our curriculum learning methodology is somewhat effective even with-

out incorporating hard example mining. DDS-NAS performance with an untrained au-

toencoder exceeds that of the original framework with limited data in all cases (88.58%

compared to 88.90% for CIFAR-10 with DARTS, 90.03% compared to 91.52% for

Fashion-MNIST with P-DARTS).

6. Limitations

The modularity of the proposed DDS-NAS framework provides a significant advan-

tage over existing NAS methods, and allows it to be adopted alongside multiple NAS

frameworks. Selecting an off-the-shelf autoencoder or training one from scratch is a

reasonable approach provided it can generate a low-dimensionality embedding space

that offers reasonable reconstruction and clustering capabilities (see Section 5.2). For

fine-grained classification tasks however, this is a challenge (see Figure 2) and remains

an open area of research.
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In addition, the current DDS-NAS approach requires one kd-tree per class so that

we can perform class-aware dynamic dataset updates. While this offers reasonable

robustness towards biased datasets, long-tailed distributions in datasets may present

additional challenges, where there are not enough samples for a given class. We might

expect training samples to be memorized in this situation, yielding noisy architecture

weight-update steps. One simple solution to resolve this might be to combine samples

from classes with few samples into a single kd-tree but this is a direction for future

research.

7. Conclusion

To conclude, we propose DDS-NAS: a novel NAS framework capable of reducing

the time required for the NAS search phase by one order of magnitude. By employing

image similarity as a basis for hard example mining, and thus (online) dynamic data

sub-selection, DDS-NAS yields models that remain competitive towards accuracy and

memory costs upon common image datasets. Further, we demonstrate that DDS-NAS

can be deployable upon several NAS approaches and architecture spaces, and is simi-

larly extendable to all existing evolutionary, reinforcement-learning, or gradient-based

NAS approaches. DDS-NAS can even incorporate NAS search phase techniques that

are deployed alongside rather than in place of existing NAS approaches [15].

Following the success of our approach, we posit that only a fraction of commonly

used image datasets contribute to learning. As such, additional analysis of these datasets

is necessary. Moreover, a more comprehensive investigation into the autoencoder archi-

tecture employed within our hard example mining method may yield better results (and

thus further reduce the volume of contributing images within a dataset). Specifically,

we require an autoencoder that can generate similar embeddings for similar images

even within the fine-grain classification domain. Alternative autoencoder losses, or

measures of image similarity such as hashing, may yield similar improvements. Nev-

ertheless, even a glimpse of image similarity as a metric within hard example mining
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has proven extremely effective. We thus introduce several new avenues for improve-

ment, particularly alongside NAS frameworks, and demonstrate that network architec-

ture topology design should not necessarily be the sole consideration for future NAS

solutions.
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A. Hard Example Mining Search Process

Figure 4: An example embedding space for the cat class.

In the first iterations of training, all samples are considered equally difficult and
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images from each class are randomly sampled. The embedding space for a cat class

might resemble Figure 4. The ginger cat in daylight (coordinates = 0, 0, 0) is sampled

first, and after a few iterations, the current subset of data is mastered. Performance on

the ginger cat sample is good and it is considered easy. The most dissimilar image in

a given dimension to the current cat sample is the ginger cat in darkness (coordinates

= 0, 1, 0). The model is trained for a few more epochs and eventually the data subset

is mastered again, and performance on the cat in darkness is good. This time the most

dissimilar image in a new dimension is the black cat (coordinates = 1, 1, 1), which is

now added to the data subset and replaces the ginger cat. In this way, different features

of the cat embedding space are explored during training. In practice, dimensions are

often more abstract based on the learnt embedding space of the autoencoder.

Traditional hard example mining strategies compute hardness for all samples in the

entire dataset and re-weight their impact accordingly. By using image dissimilarity as

a measure for image hardness, we do not need to evaluate current model performance

on images outside of a data subset. We compute similarity embeddings once prior to

any NAS training iterations and use the embeddings to calculate maximally dissimilar

image samples from the current data subset for the next training iteration. We are

therefore able to levy the benefits of curriculum learning and hard example mining

while reducing overhead. This has the benefit of hard example mining and curriculum

learning over existing core-set selection NAS approaches [21, 22], which use neither.

In this way, DDS-NAS also benefits from data subset selection compared to curriculum

strategies [18, 19].
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B. Overall Pipeline Pseudo-code with Time Complexity Analysis

Note: In this algorithm, n′ represents a subset of size much smaller than n, i.e., n′ ≪ n.

Algorithm 1 Pseudo-code illustrating the overall DDS-NAS pipeline

Step Big-O Time Complexity
1: Initialize data subset: O(n′)

Randomly select images from each class
to form a balanced subset of size n′

2: Construct m class-specific kd-trees O(mn log n)
3: Compute feature embeddings with autoencoder
4: for each NAS iteration do O(k)
5: if current subset is mastered then O(1)
6: Retain hard examples based on threshold O(n′)
7: Identify dissimilar images via kd-tree look-up O(log n′)
8: Replace easy images with dissimilar ones O(1)
9: Update dataset for next NAS iteration O(n′)

10: end if
11: Perform a normal NAS training iteration
12: if network has converged then O(1)
13: Stop O(1)
14: end if
15: end for

Note: As long as k is sufficiently large, this algorithm significantly reduces conver-

gence time. In modern deep learning, k is typically large enough to ensure this.
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