
Superpixel-based Anomaly Detection for Irregular
Textures with a Focus on Pixel-level Accuracy

Mehdi Rafiei1, Toby P. Breckon2 and Alexandros Iosifidis1

1DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
2Department of Computer Science, Durham University, Durham, UK

{rafiei, ai}@ece.au.dk, toby.breckon@durham.ac.uk

Abstract—Recent anomaly detection methods achieve high
performance on commonly used image and pixel-level metrics.
However, due to the imbalance in the number of normal and
abnormal pixels commonly encountered in anomaly detection
problems, commonly adopted pixel-level performance metrics
cannot effectively evaluate model performance. This paper
proposes a novel approach for anomaly detection within the
irregular texture domain, focusing on pixel-level accuracy metrics
suitable for such imbalanced problems. The proposed Superpixel-
based Coupled-hypersphere-based Feature Adaptation (Sp-CFA)
method leverages the intermediate adaptive representation of
superpixels to enable superior pixel-level anomaly detection
performance. We demonstrate superior performance over the
irregular texture classes within the MVTec AD benchmark
dataset, KSDD2 dataset, and an X-ray dataset of manufactured
fibrous products.

Index Terms—Anomaly detection, Superpixel, Metric selection,
Irregular texture

I. INTRODUCTION

The ability to detect anomalies in irregular texture products

plays a crucial role in many industries for ensuring prod-

uct quality, reliability, and safety. In these cases, anomaly

detection at the pixel level poses unique challenges due to

the complex nature of irregular textures. Unlike objects and

regular texture products, irregular textures lack consistent

patterns or repetitive structures, making it challenging to define

a clear baseline for anomaly detection. Moreover, anomalies in

irregular texture products can vary significantly in size, shape,

and appearance, further exacerbating the detection task.
In recent years, significant advancements have been made in

anomaly detection methods, leveraging statistical analyses and

machine learning. In this regard, several deep learning models

have been recently proposed for texture surface anomaly detec-

tion. Examples of unsupervised deep learning models trained

on only non-anomalous (normal) data samples include the

autoencoder-based models in [1–4] and the transformer-based

model in [5] used to detect anomalies in texture products. A

zero-shot method is proposed in [6], which is not trained on

normal samples. It works by receiving a sample, extracting

features, and assessing whether any region appears differently

from others. A domain-generalized textured surface anomaly

detection model is proposed in [7]. This model observes

normal and abnormal data across multiple source domains and

is expected to be generalized to an unseen textured surface of

interest. An overview of recent deep models used for anomaly

detection on industrial texture products is available in [8].

Ground truth SegmentationInput Image Detection error

Fig. 1. Anomaly detection examples using CFA [11]. From left to right:
input image, ground truth, anomaly segmentation, and detection error (red:
false positive or false negative, green: true positive).

Prior works generally consider visual anomaly detection as

either a high-level per-image (i.e., image-level binary decision)

or low-level per-pixel (i.e., pixel-level segmentation) task.

These works often rely on metrics such as Area Under the

Receiver Operating Characteristic Curve (AUROC) and F1-

score to evaluate the image-level performance and AUROC

and Area Under the Per-Region-Overlap curve (AUPRO) [9]

to evaluate the pixel-level performance of anomaly detection

models. Although these performance metrics are suitable for

image-level anomaly detection, they may not be appropriate

when used for pixel-level performance evaluation, considering

the severe class imbalance between abnormal and normal

pixels in almost all anomaly detection problems [10]. As

highlighted in [10] Precision-Recall-based metrics, such as the

Area Under the Precision-Recall Curve (AUPR) and F1-score,

are more suitable as they effectively account for performance

disparities resulting from an imbalanced minority (abnormal)

class.

By further looking at the qualitative outputs produced by

existing methods, it can be seen that the main reason behind

their low pixel-level performance on AUPR and F1-score is

their lack of precision around anomaly region borders (e.g.,

Figure 1). To address this problem, in this paper, we propose a

new approach for anomaly detection on irregular texture prod-

ucts by exploiting superpixels [12] as an intermediate spatial

representation to enhance model precision within the normal-

to-abnormal boundary regions and hence more precisely de-

lineate the boundaries of anomalous regions. This is achieved

by partitioning the image into superpixels at different levels

and incorporating this information into the anomaly detection



process, leading to more accurate localization of anomalies

and an overall improvement in pixel-level performance for

irregular texture examples.

The key contributions of this work are:

• an extension to the existing region-based paradigm in

anomaly detection to consider the use of superpixels

as an intermediate spatial representation to facilitate

improved pixel-level anomaly detection in normal-to-

abnormal boundary regions.

• the primary consideration of AUPR and F1-score as per-

pixel anomaly detection performance metrics capable of

better delineating relative performance in the presence

of significant normal to abnormal class imbalance (as is

commonplace in anomaly detection problems).

• demonstrable state of the art performance on the irregular

texture classes within the MVTec AD benchmark dataset

[13], Kolektor Surface-Defect Dataset 2 (KSDD2) [14],

and an X-ray dataset of manufactured fibrous prod-

ucts [15] in comparison to eight leading contemporary

anomaly detection methods [11, 16–22].

II. RELATED WORK

The method proposed in this paper exploits superpixels to

enhance the ability of the Coupled-hypersphere-based Feature

Adaptation (CFA) method [11] for delineating the boundaries

of anomalous regions with greater precision. Therefore, in

this section, the original CFA method and the Simple Lin-

ear Iterative Clustering (SLIC) method [12], used to extract

superpixels, are briefly described.

A. Coupled-hypersphere Feature Adaptation

CFA leverages transfer learning to mitigate the bias of pre-

trained convolutional neural networks (CNN) by learning

patch features from normal samples in the target dataset. It

ensures that these patch features have a high density around

the memorized features, thus addressing the problem of over-

estimating abnormality in pre-trained CNN. As it can be seen

in Figure 2, the patch features, denoted as F ∈ R
D×H×W ,

are obtained by inferring samples from the target dataset using

a biased CNN. Since the feature maps have different spatial

resolutions at each depth of the CNN, they are interpolated

and concatenated. Therefore, H and W denote the height and

width of the largest feature map, respectively, and D indicates

the sum of the dimensions of the sampled feature maps.

To convert the patch features into target-oriented features,

CFA employs an auxiliary network called the patch descriptor

φ(·) : RD → R
D′

.

During the training phase, CFA utilizes a memory bank

C to store the initial target-oriented features obtained from

a training set of only normal samples. These features are

stored according to a specific modeling procedure. The key

idea behind CFA is to perform contrastive supervision based

on coupled-hyperspheres created using the memorized features

c ∈ C as centers. This procedure involves optimizing the

parameters of the patch descriptor φ(·) by minimizing the

Coupled-hypersphere-based Feature Adaptation loss function.
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Fig. 2. Overall structure of the CFA model.

This loss comprises two terms: Latt and Lrep. Latt attracts

the patch features pt towards the coupled-hypersphere with

the k-th nearest neighbor (ckt ) as the center and is defined as:

Latt =
1

TK

T∑
t=1

K∑
k=1

max

(
0, D

(
φ(pt), ckt

)− r2

)
, (1)

where K represents the number of nearest neighbors matching

with pt, T is the number of patch features obtained from a

single sample, and D denotes the predefined distance metric,

such as the Euclidean distance. Latt encourages the gradual

embedding of pt closer to the hypersphere created with ctk,

thereby facilitating feature adaptation.

CFA incorporates hard negative features to enhance the

effectiveness of the patch descriptor φ(·) further. These hard

negative features are the K+j-th nearest neighbor cjt of

pt, obtained through the nearest neighbor search within the

memory bank C. Lrep, the contrastive supervision term, is

introduced to repel pt from the hypersphere created with cjt
as the center. Lrep is formulated as:

Lrep =
1

TJ

T∑
t=1

J∑
j=1

max

(
0, r2 −D

(
φ(pt), cjt

)
− α

)
, (2)

where J represents the total number of hard negative features

used for contrastive supervision, and α is a hyperparameter

controlling the balance between Latt and Lrep. The total loss

function is the combination of these two loss functions:

LCFA = Latt + Lrep. (3)

By minimizing LCFA, CFA optimizes the weights of the patch

descriptor φ(·) through transfer learning. This process ensures

that the patch features become densely clustered and facilitates

the distinction between normal and abnormal features.

Finally, the distance between pt and C is calculated using

mink D(φ(pt), ckt ) meaning the minimum distance between

pt and the memorized features in C. This distance expresses

the degree of abnormality of pt, and it is used to define the

anomaly score.

B. Simple Linear Iterative Clustering

SLIC [12] is a superpixel-based image segmentation method

that aims to group neighboring pixels with similar charac-

teristics (i.e., color similarity and proximity in the image
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Fig. 3. Overall structure of the proposed Sp-CFA model.

plane) into compact regions. Combining the benefits of K-

means clustering with graph-based segmentation allows this

to be achieved. Using the regular grid pattern, SLIC generates

superpixels by starting with a set of cluster nodes that are

constantly updated according to pixel intensity and spatial

proximity. This method has been shown to be effective in

achieving accurate and efficient image segmentation, making

it a popular choice for various computer vision applications.

III. SUPERPIXEL-BASED CFA (SP-CFA)

As shown in Figure 3, the proposed Sp-CFA model consists

of the multi-superpixel-level CFA and two pre-processing and

post-processing units. This section describes these units.

A. Multi-superpixel-level CFA

Multi-superpixel-level CFA builds around CFA by exploiting

an enriched input. In addition to each original sample, this

unit receives two pre-processed inputs. These two additional

inputs result from processing the original sample using the

pre-processing unit, considering two different superpixel sizes.

The rationale behind employing two distinct superpixel sizes is

explained in section IV-C. The region sizes of the superpixels,

denoted as the region sizes of the bigger superpixel (rsb) and

the region sizes of the smaller superpixel (rss), serve as crucial

hyperparameters within the model. This leads to three patch

descriptor networks interacting with the memory banks. The

model is trained in the same way as the original CFA.

Therefore, the total LSp CFA loss is formed by three sets

of Latt and Lrep losses, one for the original input and two

for the pre-processed inputs (i.e., bigger superpixels (Spb) and

smaller superpixel (Sps)), respectively:

LSp CFA = w1

(
Lorg
att + Lorg

rep

)
+ w2

(
LSps

att + LSps
rep

)
+w3

(
LSpb
att + LSpb

rep

)
. (4)

The proposed architecture provides a score map St for each

input. The two score maps corresponding to the pre-processed

inputs are given to the post-processing unit. Subsequently,

the score map related to the original input is combined with

the two post-processed score maps obtained by the post-

processing unit as follows:

Sfinal
t = α1S

org
t + α2S

Sps

t + α3S
Spb
t , (5)

where α1, α2, and α3 are hyperparameters chosen using a grid

search hyperparameter tuning process.

B. Pre-processing unit

The pre-processing unit receives an original sample and gives

two pre-processed versions to the multi-superpixel-level CFA

unit and the superpixel labels to the post-processing unit.

Considering two selected superpixel sizes, we have two sets

of superpixels for each original sample. For each set, we go

through every superpixel and select the rectangular patch that

covers that superpixel in the input image. Subsequently, each

selected patch is reshaped to a square and resized uniformly

via bicubic interpolation. Finally, all the square patches are

concatenated to form a new sample having the same size as the

original sample. We used the SLIC implementation provided



in the OpenCV library to find the superpixels. Instead of the

number of superpixels, this algorithm receives the approximate

region size of superpixels as input. Therefore, we do not have

precise control over the number of superpixels, and there

is a chance that the concatenated patches do not cover the

whole new sample, leading to the inclusion of zero patches

for matching the size of the new sample to that of the original

sample (see an example in Figure 3).

Therefore, the pre-processed outputs are made of square

patches, each covering a superpixel, while it breaks the overall

spatial relation outside of the superpixels. Utilizing this one-

superpixel square patch strategy, in conjunction with the CNN

layers in the feature extractor and the patch descriptors φ(·),
ensures a focused analysis of each superpixel. This focused

attention is important for improving the model’s accuracy.

Furthermore, the inherent randomness and irregularity found in

irregular texture products ensure the preservation of essential

information, even without the overall spatial relation outside

the superpixels.

C. Post-processing unit

The post-processing unit receives two score maps related to

pre-processed inputs of the multi-superpixel-level CFA unit

and gives two post-processed score maps using the received

superpixel labels from the pre-processing unit.

Considering the transformations applied by the pre-

processing unit, which include reshaping, resizing, and relocat-

ing of the superpixels, the pixels in the pre-processed samples

and, consequently, in the generated score maps are not located

at their original positions. To combine the generated score

maps, we need to ensure that the values at the same pixel

positions correspond to the same pixel in the original sample.

The post-processing unit receives two score maps and two

superpixel labels to accomplish this. The process is the reverse

of the one applied in the pre-processing unit. Firstly, knowing

the number of superpixels using the superpixel labels, each

map is divided into square patches related to the superpixels.

Subsequently, using the superpixel labels, the squares are

resized, reshaped and, finally, the exact pixels corresponding

to the superpixels are selected. In the end, the selected score

map pixels related to a superpixel are concatenated to shape

the post-processed score maps. These new maps can then be

summed up with the one corresponding to the original input.

IV. EVALUATION

In addition to the proposal of a new method, our research

contributes to addressing the choice of suitable performance

evaluation metrics for pixel-level anomaly detection methods.

By adopting the AUPR and F1-score metrics, we compare the

performance of the proposed method with that of eight leading

contemporary anomaly detection methods, considering the

class imbalance and emphasizing the detection of anomalies.

A. Experimental Setup

To evaluate the effectiveness of the proposed method, we

performed experiments on a subset of the MVTec AD dataset
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Fig. 4. Normal, abnormal, and ground truth samples from MVTec AD dataset.
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Fig. 5. Normal, abnormal, and ground truth samples from KSDD2 dataset.

comprising of five different texture products covering a range

of irregular textures, the KSDD2 dataset, and an X-ray dataset

consisting of fibrous products representing a real-world sce-

nario for anomaly detection. The latter allows us to assess the

performance of our approach in an industrial context and to

validate its effectiveness in identifying anomalies in practical

settings.

• MVTec AD [13]: This dataset includes 5,354 industrial

samples. It is divided into 15 subclasses, of which 5 are

texture products (Carpet, Grid, Leather, Tile, and Wood).

The subclass Grid is not an irregular texture product;

however, we decided to include it in the experiments to

evaluate the performance on a regular texture product. A

normal and abnormal sample of each class, along with their

ground truth, are shown in Figure 4.

• KSDD2 [14]: This dataset is specifically created for de-

tecting surface defects. It consists of different defect types

like scratches, small spots, and imperfections on the surface.

The dataset is designed for supervised, weakly-supervised,

or unsupervised anomaly detection; therefore, it contains a

training set with 246 abnormal and 2,085 normal samples.

However, we only used the normal samples during the

training phase. Additionally, the test set has 110 abnormal

and 894 normal samples. A few normal and abnormal

samples with their ground truth are shown in Figure 5.

• X-ray [15]: To represent a real-world scenario, assess

the performance of our approach in an industrial context,

and validate its effectiveness in identifying anomalies in

practical settings, the X-ray dataset consisting of fibrous

products is used with corresponding segmentation masks. A

few normal and abnormal samples, along with their ground

truth, are shown in Figure 6.

The statistical information of these datasets is shown in Table

I.
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Fig. 6. Normal, abnormal, and ground truth samples from the X-ray dataset.

TABLE I
STATISTICAL OVERVIEW OF MVTEC AD AND X-RAY DATASETS.

# Test
# Train

Norm. Abn.
# Defect
region

Image
length

Gray-
scale

Carpet 280 28 89 97 1024
Grid 264 21 57 170 1024 �
Leather 245 32 92 99 1024
Tile 230 33 84 86 840M

V
T

ec

Wood 247 19 60 168 1024
KSDD2 2085 894 110 119 230×630
X-ray 176 60 242 266 42-318 �

All CNNs used in the experiments were pre-trained on

ImageNet. We extracted feature maps from intermediate layers

to obtain multi-scale features from the pre-trained CNNs. The

hyperparameters related to CFA are set to the values used in

the original paper [11]. For all datasets, we used w1 = w2 =
w3 = 1. A grid search strategy was adopted to search for the

α1, α2, α3 values, and the region sizes of the superpixels (rss
and rsb). To accomplish this task, the model’s performance is

thoroughly evaluated across all combinations of the selected

values for the hyperparameters, utilizing the validation set.

The optimal values selected through this evaluation process

are presented in Table II. All experiments are executed five

times, and the average results are reported.

Regarding pixel-level performance assessment, we report

the results using four metrics, i.e., pixel-level AUROC (P-

AUROC), pixel-level AUPRO (P-AUPRO), pixel-level AUPR

(P-AUPR), and pixel-level F1-score (P-F1-score). As this

study focuses on pixel-level performance in anomaly detection

problems, it should be noted that it is possible to obtain lower

image-level performance by improving the pixel-level metrics.

Therefore, we also report performance using two image-level

metrics, i.e., image-level AUROC (I-AUROC), and image-

level F1-score (I-F1-score).

B. Quantitative Results

The quantitative performance assessment of the proposed Sp-

CFA in comparison with eight other state-of-the-art methods

TABLE II
SELECTED HYPER PARAMETERS.

α1 α2 α3 rss rsb
Carpet 0.25 0 0.75 10 -
Grid 0.1 0.1 0.8 10 35
Leather 0.1 0 0.9 15 -
Tile 0.15 0.2 0.65 10 30

MVTec

Wood 0.15 0.1 0.75 10 40
KSDD2 0.1 0.35 0.55 10 30
X-ray 0.25 0.35 0.4 20 40

(i.e., Patch-core [16], CFA [11], CFLOW-AD [17], Patch

Distribution Modeling (PaDiM) [18], Deep Features Modeling

(DFM) [19], EfficientAD [20], Reverse Distillation [21], and

FastFlow [22]), is presented in this section1.

Table III shows the pixel-level results over all five texture

classes in the MVTec AD dataset and the average pixel and

image-level performance over the classes. First, it can be seen

that although the proposed Sp-CFA method improves the mean

pixel-level performance based on the AUROC and AUPRO

metrics, previous methods already reported good results using

these metrics. However, we assert that using these two metrics

is not sensible, considering the highly imbalanced normal and

abnormal distributed pixels over the dataset. Therefore, AUPR

and F1-score are more suitable for the task, and the results in

Table III show considerably better performance of Sp-CFA

based on these metrics.

Additionally, although the performance of Sp-CFA on the

Grid class is promising, it is still similar to the performance

achieved by all other methods. This is because Grid is a

regular texture product. Our model has the best performance

on irregular texture products, which can be seen based on the

fact that our method provided significantly higher performance

over all other classes (irregular texture classes).

The image-level results on the MVTec AD dataset and all

the methods are shown in the last two rows of Table III.

It can be seen that although adding superpixels to the CFA

method slightly reduced the performance in comparison to the

original CFA method, the achieved performance is still high

and acceptable. When the task at hand targets image-level

performance, some existing methods can be better choices

compared to Sp-CFA. However, when considering pixel-level

performance, Sp-CFA achieves a much better performance

with acceptable image-level performance.

Results on KSDD2 and X-ray datasets measured using pixel

and image-level performance metrics are reported in Tables

IV and V, respectively. It can be seen that for both datasets,

the proposed Sp-CFA method reached the best performance

in three out of four pixel-level metrics. The image-level

performance is also high, even higher than that of CFA,

although it is not the best.

C. Ablation Study

To assess the impact of different pre-trained CNN feature

extractors on pixel-level performance, three backbones (i.e.,

VGG19 [23], ResNet18 [24], and Wide-ResNet50 [25]) were

used for the proposed method. The average pixel-level per-

formance on the texture classes of the MVTec AD dataset

is shown in Table VI. The results show that Wide-ResNet50

leads to the best performance for all metrics.

To assess the impact of using one or two additional inputs

to the Sp-CFA model, the average pixel-level performance on

the texture classes of the MVTec AD dataset is shown in

Table VII. It can be seen that adding the input corresponding

1We used the Anomalib library https://github.com/openvinotoolkit/anomalib
to generate the results for these methods.



TABLE III
PIXEL-LEVEL AND AVERAGE IMAGE-LEVEL RESULTS ON TEXTURE CLASSES IN MVTEC AD DATASET.

Patch-core CFA CFLOW PaDim DFM EfficientAD Reverse
Distillation

FastFlow Sp-CFA
(Ours)

Carpet 98.8 98.1 98.8 98.8 98.4 94.3 99.0 98.4 96.7
Grid 96.9 95.3 97.4 96.7 92.6 93.7 98.6 97.4 97.1
Leather 99.0 98.9 99.5 98.9 98.2 97.5 99.3 99.4 99.5
Tile 95.2 98.5 95.9 94.9 94.3 90.7 93.2 95.0 98.6
Wood 92.8 97.3 95.0 93.9 90.5 87.4 93.9 95.2 97.6

P-AUROC

Average 96.6 97.6 97.3 96.6 94.8 92.7 96.8 97.1 97.9
Carpet 92.8 92.1 93.8 95.3 90.7 88.8 96.7 94.5 91.7
Grid 86.6 86.1 90.2 89.0 79.6 89.0 95.7 92.3 91.3
Leather 96.7 95.3 98.4 98.0 96.0 97.3 97.7 98.4 98.4
Tile 85.3 90.6 90.4 86.3 85.2 82.6 81.1 89.6 94.6
Wood 86.2 89.1 88.6 91.6 83.6 79.6 90.6 93.6 92.3

P-AUPRO

Average 89.5 90.6 92.3 92.0 87.0 87.5 92.4 93.7 93.7
Carpet 56.7 53.7 56.5 54.4 50.1 62.5 62.9 54.0 64.1
Grid 26.8 19.3 29.8 26.0 12.5 51.4 35.6 28.9 21.9
Leather 38.3 33.7 50.9 37.9 25.0 54.7 48.6 53.2 55.3
Tile 48.4 84.5 57.0 46.3 46.8 74.4 39.1 61.9 87.8
Wood 42.7 68.2 41.1 40.6 27.7 53.8 36.5 53.5 73.0

P-AUPR

Average 42.6 51.9 47.1 41.0 32.4 59.4 44.5 50.3 60.4
Carpet 55.6 58.9 62.0 53.2 51.5 61.9 61.6 55.6 62.0
Grid 33.0 27.7 39.4 34.0 22.0 49.9 43.4 41.1 30.3
Leather 38.7 36.0 55.1 35.9 30.4 55.6 50.4 55.7 57.4
Tile 59.5 77.2 65.4 58.2 55.6 74.0 53.0 62.7 81.1
Wood 45.3 61.7 50.6 43.6 34.0 54.4 46.2 57.4 65.6

P-F1-score

Average 46.4 52.3 54.5 45.0 38.7 59.2 50.9 54.5 59.3
I-AUROC Average 98.7 98.3 97.0 98.8 93.5 99.2 98.5 96.8 98.2
I-F1-score Average 98.3 98.1 97.6 97.5 95.1 98.4 97.7 94.1 97.9

TABLE IV
PIXEL- AND IMAGE-LEVEL RESULTS ON KSDD2 DATASET.

Patch-core CFA CFLOW PaDim DFM EfficientAD Reverse
Distillation

FastFlow Sp-CFA
(Ours)

P-AUROC 98.3 98.1 98.1 97.5 98.6 97.9 98.4 92.0 98.6
P-AUPRO 93.0 92.8 92.9 94.2 93.3 93.8 94.0 85.6 92.8
P-AUPR 48.1 28.8 49.5 40.3 35.7 46.6 41.4 48.7 51.2
P-F1-score 50.6 35.3 52.8 43.6 42.2 50.4 46.2 49.7 54.4
I-AUROC 95.2 94.1 91.0 90.3 93.0 93.9 92.5 91.9 94.0
I-F1-score 82.5 73.3 76.8 65.1 73.9 78.3 72.0 84.6 77.8

TABLE V
PIXEL- AND IMAGE-LEVEL RESULTS ON X-RAY DATASET.

Patch-core CFA CFLOW PaDim DFM EfficientAD Reverse
Distillation

FastFlow Sp-CFA
(Ours)

P-AUROC 90.5 85.8 87.8 88.8 88.4 85.2 82.4 86.0 90.7
P-AUPRO 94.0 66.2 68.8 74.2 72.5 69.9 61.5 67.8 76.9
P-AUPR 63.6 64.5 49.9 57.6 60.8 57.8 41.5 48.5 65.5
P-F1-score 60.9 58.5 55.3 58.4 58.7 46.1 47.8 54.9 61.5
I-AUROC 1 98.8 96.4 97.3 1 99.6 98.6 99.6 99.7
I-F1-score 1 97.7 97.4 97.9 1 99.8 98.0 99.4 97.5

TABLE VI
AVERAGE PIXEL-LEVEL PERFORMANCE OF THE PROPOSED METHOD WITH

VARIOUS PRE-TRAINED CNN FEATURE EXTRACTORS ON MVTEC AD
DATASET.

Backbone P-AUROC P-AUPRO P-AUPR P-F1-score
VGG19 95.6 91.6 58.1 57.4
ResNet18 97.4 93.1 59.9 58.9
WRN50-2 97.9 93.7 60.4 59.3

to smaller superpixels to the original CFA led to better

performance compared to adding the input corresponding

to bigger superpixels. Adding the two inputs corresponding

to smaller and bigger superpixels led to the best overall

TABLE VII
AVERAGE PIXEL-LEVEL PERFORMANCE OF THE PROPOSED METHOD WITH

VARIOUS SUPERPIXEL LEVELS ON MVTEC AD DATASET.

rss rsb P-AUROC P-AUPRO P-AUPR P-F1-score
� 97.8 93.9 60.3 59.2

� 97.5 92.8 58.8 55.9
� � 97.9 93.7 60.4 59.3

performance, by reaching the best results based on AUROC,

AUPR, and F1-score metrics. The enhancement observed by

introducing the second superpixel is marginal compared to the

improvement achieved by incorporating the smaller superpixel
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Fig. 7. Visualization of results of anomaly localization for texture classes in MVTec AD dataset.

alone. Therefore, although it is conceivable that adding a

third superpixel size might yield further performance gains,

the improvement would likely be minimal. Consequently, we

opted for simplicity, utilizing only two sizes and avoiding

unnecessary complexity for such marginal enhancements.

D. Qualitative Results

Figure 7 includes qualitative results of anomaly localization

for randomly selected samples from texture classes in the

MVTec AD dataset obtained by our proposed method and the

eight competing state-of-the-art methods. The figure shows the

input image, ground truth, the predicted score maps for each

method and the corresponding segmented abnormal areas. It

can be seen that the segmented abnormal areas obtained by the

proposed method are more precise to the borderline of defects.

Therefore, the consistent effectiveness of the proposed method

in accurately localizing abnormal areas on all irregular texture

products compared to other methods, even in challenging

cases, shows its high qualitative performance.



V. CONCLUSION

We introduced a superpixel-based method for anomaly de-

tection in irregular texture products, focusing on pixel-level

metrics. The proposed method significantly improves anomaly

detection performance by leveraging the power of superpixels

in Coupled-hypersphere-based Feature Adaptation (CFA) and

addressing the challenge of class imbalance. We demonstrated

superior performance in identifying abnormal pixels through

experiments on the MVTec AD dataset, KSDD2 dataset, and

an X-ray dataset of manufactured fibrous products, providing

enhanced anomaly detection capabilities. This research has

important implications for industries dealing with irregular

texture products, offering a practical solution to improve

inspection processes and reduce the risk of defective products.
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