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Abstract—Automatic perception and understanding of human
emotion is becoming an increasingly attractive research field in
artificial intelligence and human-computer interaction. Emotion
portrayal within conversation plays a significant role in the
semantics of a sentence. However, emotion is not only biologically
determined but is also influenced by the environment. Therefore,
cultural differences exist in some aspects of emotions, and it is
important for the next generation of computer systems to adapt
the cross-cultural difference in order to enable more naturalistic
interactions between humans and machines. In this paper, we
investigate the suitability of state-of-the-art deep learning archi-
tectures based on recurrent neural network (RNN) variants with
explicit attention modelling to bridge the gap across different
cultures (German and Hungarian) for emotion prediction in
video. Three different attention based network architectures are
proposed in this work:- early attention fusion, extended multi-
attention fusion and attention-based encoder-decoder. Our RNN
variants with explicit attention modelling approach achieves very
promising Concordance Correlation Coefficient results, which
outperform the baseline on Arousal of 0.637 vs. 0.614 (baseline),
for Valence of 0.689 vs. 0.615 and for Liking of 0.625 vs. 0.222.

Index Terms—affective computing, emotion, multi-modal,
cross-cultural, attention network, emotion recognition, motion
detection

I. INTRODUCTION

Emotions are a complex state of feeling that results in
physical and psychological changes, variously associated with
thoughts, feelings, behaviour, and a degree of pleasure or dis-
pleasure [1]. They form a very important semantic component
in human conversations - without the context of the speakers
emotion, the true intention of the utterance may be ambiguous.
Therefore, the affective computing field aims to recognise
human emotion to enable more naturalistic human-computer
interaction [2]. There are two type of emotion representation
models in affective computing:- categorical and dimensional
[3]. As for the categorical model, a persons emotional state is
described via a discrete set of affective attributes [4], such as
happiness, sadness, fear, disgust, anger, surprise. In contrast,
within the dimensional model the emotional state is mapped
to a continuous coordinate points in a 3D or 2D Cartesian
space, such as valence-arousal-dominance (VAD) [5]. VAD is
the emotion state representation in continuous space where
valence represents the pleasantness ranging from positive to
negative, arousal represents the intensity of emotion ranging
from excited to calm, and dominance represents the degree of
control ranging from uncontrolled to in control [5].

Fig. 1. Overview of the proposed multi-modal emotion prediction approaches.

The relationship between categorical and dimensional mod-
els are studied extensively by Sun et al [6]. For example,
positive valence relates to a happy state, while negative valence
relates to a sad or angry state. Whilst categorical models are
easier to understand, the limited discrete set of categories
may not suitably reflect the subtlety of emotions. In contrast,
dimensional models can express subtler and more complicated
emotional states when compared to their categorical counter-
parts.

Constructing a good dimensional emotion prediction ap-
proach relies upon three aspects: various multi-modal feature
extraction, an effective feature fusion strategy, and a versatile
numerical regression model [7] [8] [9]. Traditionally, re-
searchers rely on handcrafted audio-visual features. For video,
appearance features such as spatial-temporal facial textures
extracted via the Local Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP) [10] and geometric features
such as facial landmarks [11] [12] have been often used. As
for audio, low level descriptor features provided in the Geneva
Minimalistic Acoustic Parameter Set (eGEMAPS) have also
been used. Recently, the rise of deep learning based methods,
particularly in convolutional neural networks (CNN) and re-
current neural networks (RNN), motivates affective computing
research to use CNN to extract deep audio-visual features as
viable deep representations for effective emotion prediction [7]
[13] [9].

The performance of emotion prediction approaches are often
influenced by cultural diversity [14]. In previous literature
[15] [16] [17], some aspects of emotion have been shown
to be culturally different. For example, traditionally-defined
Western culture perceives high arousal states as happiness,
meanwhile traditionally-defined Eastern culture perceives hap-
piness from experiencing low arousal states [17]. As such,
in this work our goal is to evaluate the effectiveness of
CNN architectures in order to improve the generalization



of emotional prediction in such cross-cultural scenarios. Our
main aim is to predict emotion automatically in the valence-
arousal emotional dimension, and a third dimension describing
liking (or sentiment) continuously over time. In summary, our
contributions are:

• a broad analysis spanning both hand-crafted features and
deep learning features within the context of continuous
emotion prediction from video. For the hand-crafted au-
dio features, we use lower-level descriptor features such
as eGeMAPS and Mel Frequency Cepstral Coefficient
(MFCC). For video, we utilize Facial Action Units (FAU)
to extract appearance and geometric information from dif-
ferent facial attributes. In terms of deep learning features,
we use Deep Spectrum [18] features from pre-trained
CNN [19] [20] [21] on audio. As for video modality,
we employ a VGG-16 [19] as well as a ResNet-50 [22]
network that are pre-trained with the Affwild [23] dataset
as our deep features representation.

• an evaluation of RNN variants with explicit attention
modelling across two different cultures, German and
Hungarian in the context of continuous emotion pre-
diction from video. We further exploit three different
RNN architectures: early attention fusion, extended multi-
attention fusion and attention-based encoder-decoder. Our
proposed RNN variants demonstrates promising results,
outperforming the prior work of [24].

II. RELATED WORK

Applications of emotion prediction face many challenges,
mostly due to variations across individuals such as culture,
gender, demographic and so on. Notable work such as Chiou
et al. [25] attempt to solve such variation issues by combining
emotional datasets from Mandarin and German to improve the
cross-cultural performance. Neumann et al. [26] address the
inconsistencies between two cultures (French and English) by
utilizing a small amount of data from the target culture in
order to finetune an emotion model originally trained on a
larger dataset from the source culture. Gideon et al. [27] uses
a domain adaptation approach on cross-culture speech emotion
prediction. In this section, we present a focused summary of
the current state-of-the-art with respect to topics related to the
methodology of automatic emotion prediction proposed in this
work.

A. Multi-modality Features in Emotion Prediction

In continuous emotion prediction, various multi-modal fea-
tures have been utilized, ranging from hand-crafted features
to deep learning features. Notable works such as Sánchez-
Lozano et al. [28] make use of Local Binary Patterns (LBP)
and Gabor features from the visual modality and low-level
descriptors such as MFCC from audio. On the other hand,
Wollmer et al. [29] and Brady et al. [7] focus on low-level
descriptor features as an input towards Long Short Term Mem-
ory (LSTM) networks and Support Vector Regression (SVR),
respectively. As deep learning over hand-crafted features,
emotion prediction research has similarly tended to prefer deep

features representations from varying deep neural network
architectures. Notable works such as Chen et al. [13], Huang
et al. [30] and Zhao et al. [9] demonstrate that deep learning
features achieve comparable or even better performance than
handcrafted features, across video and audio modalities.

Whilst multi-modal features are widely regarded as the most
encompassing representation of emotion, multi-modal fusion
is also essential to achieve better performance for emotion
prediction approaches. There are mainly three strategies to
achieve multi-modal fusion, namely early-fusion, late fusion
and model-level fusion. Previous work by Huang et al. [30]
adopts late fusion to combine the predictions of different
features. Meanwhile, Chen et al. [13] explore early fusion
from all available modalities. Subsequent work by Huang et
al. [31] compare the performance between these two methods.
This study [31] shows that that late fusion is good at predicting
arousal and valence, while early fusion is more suitable for lik-
ing prediction. The latest work by Huang et al. [32] employed
model-level fusion by fusing audio-visual modalities via a
multi-headed attention module and hence achieving superior
performance than early fusion and late fusion alone. Therefore
in this work we follow Huang et al. [32] approach by adopting
a model-level fusion strategy in RNN architecture in order to
accommodate representative features both the video and audio
modalities.

B. Model Architecture in Emotion Prediction

With respect to the continuous emotion prediction, various
regression approaches have been employed. Most commonly
two regression models are frequently utilised: Kernel based
Support Vector Regression and Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNN) [33] [13] [34] [24].
Previous work by Wollmer et al. [33] and Chen et al. [13]
utilize both LSTM-RNN and SVR to perform regression
analysis on the arousal and valence dimension. These studies
reveal that LSTM manage to capture the temporal information
of the emotional dimension significantly, outperforming SVR.
Later work by Huang et al. [34] utilize three kinds of temporal
architectures, including LSTM, Time-Delay Neural Networks
(TDNN) and a multi-headed attention network, to learn differ-
ent temporal modeling in the sequence hence showing that a
combination of these approaches obtains the best result. Mean-
while, Chen et al. [13] fully utilize Deep Bidirectional Long
Short-Term Memory Recurrent Neural Networks (DBLSTM)
for each unimodal feature representation. Similarly in this
work we adopt LSTM-RNN architecture that incorporate an
attention network in continuous emotion prediction.

C. Attention in Emotion Prediction

These aforementioned studies [13] [34] [31] make the
assumption that emotion can be reliably predicted at every
single frame, which maybe an unreasonable assumption. As
for example, in the audio modality, the characteristics of
each uttered word may not offer an equitable insight into
the sentiment of the entire sentence. Similarly, any single
still image frame from a video sequence may not accurately



convey the emotional state of the human subject. Mirsamadi
et al. [35] tackle this situation by assigning a weight to each
frame depending on how emotionally salient the features are,
by using an attention mechanism. This allows the network
to focus on the video frames in the sequence that contain-
ing strong emotional characteristics. Lee et al. [36] extend
attention weights towards both textural (visual) features and
audio features such that the attention weights indicate the
modality whose features are most useful for every frame.
Wang et al. [37] expand the concept of a multi-modal network
architecture for this task by utilising multiple attention layers.
Each input for the audio/video modality is weighted using an
attention mechanism similar to the method used by Mirsamadi
et al. [35] to emphasize emotionally meaningful features
from each modality. These approaches [35] [36] [37] readily
demonstrate the added value of an attention mechanism as they
are shown to outperform the same architectural approach with
the attention component removed. Inspired by the effectiveness
of dynamically ignoring unreliable modalities, we explore the
use of attention mechanisms allowing our model to learn to
dynamically assign larger weights to more useful features.

III. METHODOLOGY

In this work, we investigate three different RNN archi-
tecture variants, that each incorporate an attention network
subcomponent in a variety of architecture. All of them take
both audio and visual features as input (see Section IV) and
output a continuous time series of three values, representing
a subject emotional dimension for the arousal, valence and
liking dimensions, as shown in Figure 1.

A. Early Attention Fusion Model (EAF)

The first variant RNN architecture is illustrated in Figure
2. In this approach, we fully utilize CNN Deep Spectrum
and facial features for video whilst using MFCC features for
audio. Our approach first applies a fully connected layer and
a softmax function respectively. Subsequently, we calculate
the attention weight obtain from a softmax function for each
modality. Subsequently, these features will become an input
to two layer bi-directional LSTM. In this stage, the LSTM
will produce one fixed-length vector from final hidden state
which encompasses all the necessary information of the of the
three-dimensional continuous emotion representation in use.

B. Attention based Encoder and Decoder Model (AED)

A key limitation of RNN techniques is that they are
limited in their ability to track long-term dependencies on
the emotion. Since emotions are dynamic [34], the ability
of the architecture to capture emotional long-term dynamic
should be well modeled. In order to address this issue, we
implement the architecture from Bahdanau et al. [38], where
an encoder-decoder model can learns to align and translate
jointly, as shown in Figure 3. It consists of a bidirectional
LSTM as an encoder, and attention weights connecting each
input location to each output location. This architecture allows
the LSTM decoder to focus on all hidden states instead of just

Fig. 2. Early Attention Fusion architecture (EAF).

the final hidden state. The additional use of attention within
this architecture enables the decoder a flexibility to identify the
parts of the features that may relevant for three-dimensional
continuous emotion representation in use.

Fig. 3. Attention based Encoder and Decoder architecture (AED).

C. Extended Multi-Attention Fusion Network (EMAFN)

As discussed in Section III-A and III-B, both of the afore-
mentioned architectures are good candidates for continuous
emotion prediction, since they manage to capture dynamic
relationship existing between consecutive features taken from
both audio and video. Therefore, we further utilise these two
temporal architecture by replacing bi-directional LSTM (Fig-
ure 2) with bi-directional LSTM with attention mechanisms
(Figure 3) as shown in Figure 4. In this approach, we extend



conventional attention by allowing multiple attention in both
feature and model level, respectively. These multiple attention
enables the features to learn emotional dynamic and at the
same time concentrates only the parts of the features which
relevant for continuous emotion prediction.

Fig. 4. Extended Multi-Attention Fusion Network architecture (EMAFN).

IV. EXPERIMENTAL SETUP

In this section, we discuss two experimental aspects of
our RNN variant architectures with attention, as explained in
Section III. Namely, our choice of datasets and our choice of
underlying feature extraction approach.
A. Datasets

Our proposed architectures are trained on features extracted
from the Audio/Visual Emotion Challenge (AVEC) 2019
dataset [24]. This dataset consists of audio and video record-
ings of dyadic interactions between friends of both German
and Hungarian human subjects, under uncontrolled settings
using webcams and microphones. The videos have been an-
notated at the individual frame level across the emotional
dimensions of arousal, valence and liking by human annotators
that were native speakers of the corresponding language that a
given recording was in. The dataset is provided as part of the
AVEC 2019 challenge [24] and is partitioned into training and
development partitions. The training partition contains thirty-
four videos each for participants of German and Hungarian
descent (68 videos in total comprising of approximately 123k
annotated frames). The development partition contains four-
teen videos each for participants of German and Hungarian
descent (28 videos in total comprising of approximately 38k

annotated frames). As we do not have access to the original
testing partition (set) from the AVEC 2019 challenge [24], we
instead solely use the training partition during training of the
models, and the development partition is used as the testing
partition.
B. Feature Extraction

From the audiovisual recordings, we fully utilises two types
of features: low level descriptor features and deep learning
based features, which are explained in detail in the remainder
of this section.

Low-Level Descriptor Features: For audio we use the fea-
tures defined in the extended Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPS) and Mel Frequency Cepstral
Coefficient (MFCC) using the openSMILE toolkit [39] that
describe spectral, cepstral, prosodic and voice quality informa-
tion [24] to generate an audio descriptor. Similarly, we utilize
appearance, geometric information from the video dataset in
the form of Facial Action Units (FAU). FAU are descriptors
of the positions of different facial features and the intensity
of the expression it contributes to. These FAU together with
gaze orientation for the participant within each video frame are
extracted using the openFACE toolkit [40] to generate a visual
facial descriptor. These low-level features are summarised by
computing their mean and standard deviation using a sliding
window of 4s in length and a hop size 100ms, from which
a bag-of-words feature representation is used to capture the
distribution of these features. This is achieved with the use
of the openXBOW toolkit [41] using codewords to form a
bag of words dictionary representation of size 100. These
extracted feature representations are thus concatenated to form
a joint 386 dimension audio and 153 dimension video feature
descriptor which forms the dense tensor input to each of our
proposal RNN variant architectures outlined in Section III.

Deep Features: Mel-Spectrogram images of the audio are
produced using Deep Spectrum [42] for a window size of
4s in length and a hop size 100ms. These images are then
passed through a set of pre-trained deep convolutional neural
networks, from which we extract activations from the late-
stage layers within the architecture to use. In this manner we
obtain a 4096 dimension feature vector from the activations
each of VGG-16 [19] and AlexNet [20] in each of the locations
of second fully connected layer. Similarly we obtain 1024 and
1920 dimensional feature vectors from the activations each of
DenseNet-121 and DenseNet-201 [21] in each of the locations
of last average pooling layer. For visual features we extract
features from a VGG-16 in each of the locations of first fully-
connected layer and a ResNet-50 n each of the locations of
global average pooling layer, both of which have been pre-
trained on the Aff wild dataset [24]. As a result, we obtain
4096 dimensional deep feature vector from VGG-16 and a
2048 dimensional deep feature vector from ResNet-50 for
each frame. These extracted feature representations are thus
concatenated to form a joint 11136 dimension audio and 6144
dimension video feature descriptor which forms the dense
tensor input to each of our proposal RNN variant architectures
outlined in Section III.



V. EVALUATION

In this section, we evaluate the performance of the RNN
variant architectures with attention (Section III) under the
respective evaluation metrics and review the performance on
emotional dimensions of arousal, valence and liking respec-
tively in a cross-cultural context.

A. Performance Evaluation

We treat the emotion dimensional prediction of arousal, va-
lence and liking as a regression task. Therefore, to evaluate the
quality of time series prediction which represents each of the
aforementioned emotion dimensions, we use the concordance
correlation coefficient (CCC), ρc, for a time series variable x
compared to a ground truth time series variable y is defined
as follows:

ρc =
2ρx,yσxσy

σ2
x + σ2

y + (µx − µy)2
(1)

where symbol ρx,y is the pearson correlation coefficient (PCC)
defined as follows

ρx,y =
covariance(x, y)

σx, σy
(2)

and σ2
x and σ2

y are the variance of each time series and µx

and µy are the mean values of each series. During training,
we transformed this equation into a loss function so that the
weight updates serve to maximise this statistic. A CCC of
1 indicates a perfect correlation between the two time series
variables, whilst a CCC of 0 indicates little to no correlation.
Our choice of this statistic is based on the fact that it is
amplitude (scale) and phase (temporal location) invariant [43]
which helps to mitigate for labelling inaccuracies within the
ground truth that is attributable to the reaction time of the
annotators [44].

B. Analysis

The results are reported in Table I for AVEC 2019 baseline
[24] along with our proposed architectures as detailed in
Section III. In emotional dimension of arousal, the AED
architecture improves emotion detection accuracy with an
increase performance over the baseline results. The AED
architecture achieves CCC value of 0.635, 0.638, and 0.637
(Table I, upper) when tested on German, Hungarian and
German plus Hungarian cultures together, respectively. The
AED architecture also improves upon the performance in
the emotional dimension of valence, achieving CCC value
of 0.708 and 0.689 (Table I, middle) for both Hungarian
and German plus Hungarian cultures together, respectively.
At the same time, the AED architecture provides somewhat
average performance on German culture, with a CCC value
of 0.676, as opposed to 0.684 in the baseline results. We
further observe that EMAFN provides great improvement upon
the baseline resuts in emotional dimension of liking. The
EMAFN architecture manages to achieve a CCC value of
0.386, 0.803 and 0.625 (Table I, bottom) when tested on Ger-
man, Hungarian and German plus Hungarian cultures together,
respectively. Overall, this indicates that encoder-decode model

TABLE I
CONCORDONCE CORRELACTION COEFFICIENT RESULTS FOR EMOTIONAL
DIMENSIONS OF GERMAN AND HUNGARIAN CULTURES FROM BASELINE

APPROACH AND OUR PROPOSED ARCHITECTURE.
Culture Baseline [24] [45] [46] EAF EMAFN AED

arousal
German 0.629 0.789 0.791 0.486 0.132 0.635

Hungarian 0.583 0.583 0.585 0.222 0.181 0.638
German + Hungarian 0.614 0.724 0.737 0.365 0.155 0.637

valence
German 0.684 0.794 0.778 0.510 0.659 0.676

Hungarian 0.508 0.572 0.463 0.152 0.586 0.708
German + Hungarian 0.615 0.708 0.653 0.345 0.631 0.689

liking
German 0.048 0.352 0.441 0.160 0.386 -0.129

Hungarian 0.260 0.311 0.208 0.261 0.803 0.224
German + Hungarian 0.222 0.320 0.425 0.215 0.625 0.062

with attention weight in AED architecture makes a positive
effect on performance. We also have shown that attention can
be an effective tool in the detection of emotion when the
audiovisual dataset is diverse and includes multiple cultures.

We further compare our use of RNN architecture variance
with attention against the two best entrants of the AVEC 2019
Cross-Cultural Emotion Sub-challenge [45] [46] in Table I. In
comparison, our results offer the best performance on emo-
tional dimension of liking via EMAFN architecture with CCC
value of 0.803 and 0.625 (Table I, bottom) on both Hungarian
and German plus Hungarian respectively. Our proposed AED
architecture also offers competitive performance, with the best
CCC value of 0.638 (Table I, upper) and 0.708 (Table I,
middle) on emotional dimension of arousal and valence for
Hungarian culture respectively.

VI. CONCLUSION

In this paper, we explore the combination of efficient deep
learning and hand-crafted features across audio and video,
and novel variant RNN architectures with attention in the
cross-cultural context. We explore three different RNN variants
with attention, the early attention fusion model (EAF), the
extended multi attention fusion network (EMAFN) and the
attention-based encoder-decoder model (AED). Our proposed
variant RNN architectures with attention manage to capture
the emotional dynamic within continuous emotional dimen-
sion, namely arousal, valence and liking. The cross-cultural
experimental results demonstrate that our proposed method
can improve the emotional prediction performance over base-
line results and additionally provide competitive performance
against leading contemporary techniques on the AVEC 2019
benchmark dataset. Future work will explore both the use of
transformer architectures and the additional use of text as an
additional input modality.
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