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ABSTRACT

We present a novel Bag-of-Words (BoW) representation scheme
for image classification tasks, where the separation of features
distinctive of different classes is enforced via class-specific feature-
clustering. We investigate the implementation of this approach for
the detection of firearms in baggage security X-ray imagery. We
implement our novel BoW model using the Speeded-Up Robust
Features (SURF) detector and descriptor within a Support Vector
Machine (SVM) classifier framework. Experimentation on a large,
diverse data set yields a significant improvement in classification
performance over previous works with an optimal true positive rate
of 99.07% at a false positive rate of 4.31%. Our results indicate
that class-specific clustering primes the feature space and ultimately
simplifies the classification process. We further demonstrate the im-
portance of using diverse, representative data and efficient training
and testing procedures. The excellent performance of the classifier
is a strong indication of the potential advantages of this technique in
threat object detection in security screening settings.

Index Terms— Primed visual words, SURF, BoW, classifica-
tion, baggage X-ray, airport security

1. INTRODUCTION

Airport security screening personnel are required to manually in-
spect thousands of items of luggage for contraband on a daily basis.
In addition to this enormous workload, X-ray baggage imagery can
be extremely challenging to interpret. Due to the nature of packed
luggage, where objects are tightly packed, X-ray baggage imagery
generally contains a very high degree of clutter. Consequently, ob-
jects are often occluded or shown from unusual viewpoints (see Fig-
ure 1). It has been shown that both human and computer detection
rates are severely affected by complexity and clutter and therefore
image interpretation in such environments is particularly challenging
[1]. Furthermore, airports are usually overcrowded, demanding high
turnover rates at security checkpoints allowing screening personnel
only a limited time to examine and classify each item of baggage.

A reliable automated threat detection system for X-ray bag-
gage imagery would significantly speed up the screening process
and could improve airport security. The value of such a system
extends to ‘on-the-job’ training and performance evaluation of se-
curity personnel. The objective of this study is thus to investigate
the application of state-of-the-art object recognition techniques on
X-ray images of baggage.

Previous studies which consider the application of computer vi-
sion techniques, especially local features-based techniques, are lim-
ited in number. Gesick et al. [2] evaluate three separate approaches
(edge detection combined with pattern matching; an algorithm us-
ing Daubechies wavelet transforms [3] and a Scale Invariant Feature
Transform (SIFT) [4] based approach) for the detection of weapons
in greyscale X-ray imagery. In the case of the first two approaches
testing is limited to a very small data set (12 images) yielding un-
convincing results. In the case of SIFT, the authors do not evaluate
the feasibility of the algorithm for object recognition. Chan et al. [5]

Fig. 1. Two examples of side view X-ray baggage images containing
firearms. The images are difficult to interpret due to the unusual
viewpoint.

investigate the use of SIFT for stereo-matching on airport X-ray im-
ages. Again, object recognition is not considered, and experimen-
tation is limited to feature matching. Their work demonstrates that
while SIFT-based matching can establish correspondences between
features, application to X-ray images yields a high ratio of false
matches. It is further shown that local intensity patterns in X-ray
images of the same content can vary to a greater extent than in corre-
sponding visible spectrum images, making feature matching consid-
erably more challenging. Bastan et al. [6] investigate the applicabil-
ity of the bag-of-words (BoW) model for classification and retrieval
of X-ray baggage images. It is shown that a straightforward Sup-
port Vector Machine (SVM) classifier using SIFT descriptors yields
promising results. However, the authors emphasise performance re-
mains considerably poorer on X-ray baggage images compared to
visible spectrum images leaving much room for improvement.

The objective of this study is to develop an automated object
recognition system for X-ray baggage imagery, which is able to re-
liably detect the presence of firearms from both frontal and side-
view X-ray images. While we adopt a similar approach to [6] and
use the BoW model within an SVM classifier framework, we also
propose a novel modification to the traditional codebook generation
method. The use of our codebook in constructing the BoW repre-
sentation of images simplifies the classification procedure by prim-
ing the BoW feature space prior to classification. While Bastan et
al. [6] demonstrate that the use of information rich X-ray imagery
(quad-view, dual-energy X-ray images, giving 12 images per item)
improves classification performance, we present superior classifica-
tion results on a dataset of dual-view, single-energy X-ray images
(2 images per item). Moreover these results are achieved without the
need for using the correspondence between the two different views,
instead each image is considered independent during training and
testing. We demonstrate the efficacy of our primed BoW approach
for object recognition and emphasise the importance of establishing
large, diverse data sets and reliable training and testing procedures,
thereby extending the previous work of Bastan et al. [6].

2. METHODOLOGY

We address the issue of object type recognition as a binary classifica-
tion problem: image parts which represent a particular target object
are distinguished from background parts, which do not contain the
target object. In particular, we consider the recognition of firearms



in cluttered 2D X-ray baggage imagery.
The concept of the bag-of-words (BoW) model originated as a

document representation technique used in textual information re-
trieval and text classification. In this original context a document
is represented by a frequency vector over words. This simplified
representation eliminates all information about the original order of
words in the document. In computer vision an image can be repre-
sented as a collection of local features, generally in the form of local
feature descriptor vectors that encode the local intensity patterns at
different image locations. These descriptors are continuous valued
multi-dimensional vectors and are therefore of infinite number. Sivic
and Zisserman [7] proposed a method to obtain the equivalent of the
bag-of-words model for images: local features obtained from an im-
age set are clustered into a finite number of clusters and the cluster
centroids form a codebook which is used to encode features of im-
ages in a vector quantised representation. The cluster centroids are
called visual words and the bag-of-words model represents an im-
age by its histogram over these visual words. In the last few years
the BoW approach has been successfully applied to several object
recognition and image classification problems [8–12].

Traditionally, image classification using the BoW representation
of an image is composed of the following steps [8]: 1) feature de-
tection and description; 2) visual codebook generation; 3) BoW rep-
resentation and 4) classification. We follow this general framework
but also introduce a novel codebook generation technique that sig-
nificantly simplifies the separation of classes and leads to improved
classification results. The details of each of the components of our
approach are discussed below.

Feature detection and description: Image representations
based on local feature descriptors are widely applied in image clas-
sification and object recognition frameworks due to their robustness
to partial occlusion and variations in object layout and viewpoint.
Distinctive features of objects are detected at interest point loca-
tions which generally correspond to local maxima of a saliency
measure calculated at each location in an image. The intensity pat-
terns around these interest points are encoded using a descriptor
vector. The most widely followed work in the area of local feature
extraction has been Lowe’s method of the Scale Invariant Feature
Transform (SIFT) [4] which introduced a feature descriptor that is
invariant to translation, scale and rotation and robust to image noise.
Bay et al.’s recent work [13] proposed the Speeded Up Robust Fea-
tures (SURF) algorithm for feature detection and description that is
loosely based on SIFT. The computational cost associated with SIFT
are dramatically reduced without significant deterioration in perfor-
mance. This is achieved by introducing box-filter approximations in
the calculation of the Hessian matrix-based saliency measure. Inte-
gral images are utilised to ensure fast convolution with box-filters
and Haar wavelet filters during the detection and description stage
respectively. Furthermore according to the authors the SURF algo-
rithm is on par with or even outperforms its counterparts (e.g. SIFT)
in terms of repeatability, distinctiveness and robustness of interest
point detection and description. Figure 2 illustrates SURF features
depicted as circles on baggage X-ray images.

Based on these observations and preliminary experimentation,
we employ the SURF method for both detection and description of
features. SURF detects interest points corresponding to blobs in im-
ages over multiple scales by constructing a scale space. For each
identified interest point, the algorithm determines the orientation of
the feature and assigns a distinctive, rotation and scale invariant 64-
length descriptor vector to the feature. This highly efficient method
is robust to noise and changes in 3D viewpoint and illumination [13].

In the context of local feature extraction and object recogni-

Fig. 2. Detected SURF feature points indicated by circles of varying
size (proportional to the scale). Red circles represent light blobs
on dark backgrounds; blue circles dark blobs on light backgrounds;
green lines indicate dominant orientations of features.

tion, two important characteristics of X-ray imagery (and baggage
imagery in particular) are worth emphasising: 1) objects often ap-
pear smeared and lack any informative texture and hence images
contain fewer interest points than regular visible spectrum images;
2) X-ray baggage imagery is inherently cluttered which dramatically
increases the number of meaningless interest points detected. Con-
sidering these two characteristics, it is expected that local feature
detection algorithms such as SIFT and SURF are likely to yield ex-
cessive interest points corresponding to background clutter and com-
paratively few interest points corresponding to the target object(s)
when applied to X-ray baggage imagery. Two vital steps are taken
to address these challenges. Firstly, as a pre-processing step, we
perform a coarse foreground segmentation by truncating greyscale
pixel intensities above/below a threshold value, prior to applying the
SURF detection algorithm. The threshold values are determined em-
pirically such that intensity ranges which do not correspond to the
particular target object are excluded. This significantly reduces the
number of interest points associated with background clutter. Sec-
ondly, in order to increase the number of extracted features on the
actual target object, despite the aforementioned lack of textural in-
formation, we apply a relatively low threshold value on the saliency
measure for interest point identification resulting in a higher number
of generated features. Our interest point detection algorithm thereby
represents a trade-off between the distinctiveness of features gener-
ated by a highly selective interest point detector and the high den-
sity of feature locations obtainable from random sampling or apply-
ing a dense grid (dense sampling on a regular grid is used by Bas-
tan et al. [6]). Although evaluating a saliency measure takes more
time than sampling on a regular grid, the SURF detector is still very
fast and the reduction in unnecessary (weak) features reduces the re-
quired storage and processing time for codebook generation and for
forming a BoW representation.

Visual codebook generation: After the feature extraction stage,
images of the dataset are represented as varying sized unordered sets
of local features. However, most state-of-the-art classification tech-
niques (e.g. SVMs), require the input to be in the form of fixed sized
vectors. This problem can be solved by forming a BoW representa-
tion of images. The first step in constructing the BoW representation
is applying vector quantisation to the feature descriptors. In order to
achieve this, a codebook is generated by clustering feature descrip-
tors, usually by a k-means algorithm, then any feature descriptor
can be encoded by assigning it to the closest cluster centroid (visual
word).

As mentioned, the most popular clustering technique for code-
book generation is k-means clustering [14, 15]. In general more
accurate clustering can be obtained by the traditional flat k-means
method than by hierarchical versions, but for retrieval on large



Fig. 3. Training data examples. Positive instances (left) showing firearms of various sizes, shapes, orientations etc. Negative instances (right)
showing a variety of clutter items.

datasets it is important to consider fast hierarhical methods [16, 17].
For our classification problem we implement a flat k-means algo-
rithm but choose a variant that reduces memory requirements. As
the clustering is to be performed on a high number of samples, an
online version of k-means clustering [14] is suitable for our task
(see Table 1).

The clustering algorithm initialises the centroids by k distinct
feature descriptor vectors randomly selected from the complete fea-
ture set. In each iteration, a few features of a randomly chosen image
are used for updating the clusters. The Euclidean distance metric is
used to determine the closest centroid to a particular feature descrip-
tor. To reduce the computational cost of clustering, only those fea-
ture descriptors with the same sign of the Laplacian are compared.
The sign of the Laplacian for every feature is the trace of the Hessian
matrix at that location which is computed in the SURF descriptor al-
gorithm and distinguishes between dark blobs on light backgrounds
and vice versa. As a result, features with different Laplacian signs
do not need to be compared [13]. The algorithm terminates when the
number of iterations exceeds a predefined limit. This is set to 50,000
in our experiments which we found to be high enough to guarantee
that each centroid gets updated enough times.

When generating a visual codebook in a BoW classification
framework clustering is performed on the features obtained from a
random hold-out subset of the available data, i.e. this subset is not
included during classifier training and testing. Traditionally, one run
of the clustering method is performed using all images from this
subset regardless of the class of the object they represent, resulting
in a single set of centroids, the codebook. It is then the task of
the classifier to identify class specific patterns in the visual word
histograms [15].

We propose an intuitive modification to the aforementioned clus-
tering technique which we believe dramatically simplifies the classi-
fication procedure into different object classes leading to improved
results. Our clustering method is also performed on features of a
’hold-out’ image set but we do not ignore class labels. Rather, we
perform clustering independently on each class resulting in multiple
sets of class-specific centroids (visual words). A similar technique
has been met with considerable success by Perronnin et al. [18].

Cluster centroids: c1, . . . , ck
Number of updates per cluster: n1, . . . , nk

Initialise cluster centroids by randomly selected data points

ni = 1 (i = 1, . . . , k)

while iteration count < max iteration count

select random data point: x

find nearest centroid to x

t = argmini=1,...,k‖x− ci‖
update cluster centroid ct

nt = nt + 1

ct = ct +
x−ct
nt

end

Table 1. Online k-means clustering method.

In our experiments we categorised X-ray images into two classes:
positive which represent the target object and negative which repre-
sent background i.e. all ‘target-free’ images (see examples of pos-
itive/negative images for firearm classification in Figure 3). There-
fore in the followings, the description of the clustering method is
tailored to a two-class classification problem, but we emphasise here
that the method is also suitable for multi-class classification.

After performing feature clustering on each class, the obtained
sets of centroids are combined to form a codebook. The process
of encoding image features using this codebook is the same as in
a traditional BoW model. The motivation behind the isolated per-
class clustering approach is to enforce a representational separation
of the positive and negative class examples in the BoW model. This
primed BoW representation significantly simplifies the task of the
classifier. An added advantage to performing separate clustering on
positive and negative classes is the ability to influence the ratio of
visual words representative of each class in the codebook. In many
classification datasets negative examples are overrepresented (as in
our case) because usually they are easier to obtain. One would like
to utilise a diverse set of negative examples during codebook gen-
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(a) Firearm classification
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(b) Mobile classification

Fig. 4. ROC curve for classification of (a) firearm and (b) mobile phone images. In both cases the free parameter is the RBF kernel width σ.
In order to facilitate examination, (a) also contains a graph that is zoomed in on high true positive values.

eration along with guaranteeing that the distinctive features of the
positive examples are well represented in the codebook. Our fea-
ture clustering method provides a simple solution to this problem as
one can determine beforehand how many visual words are obtained
during each class-specific run of the clustering method. In our ex-
periments we generate equal amounts of visual words (k) from both
positive and negative classes which results in a 2k-sized codebook.

Bag-of-words representation: Up to this point images have
been represented by their collections of local features. Once the vi-
sual codebook has been generated, this image representation can be
transformed into a fixed size vector. To this end, each feature de-
scriptor is encoded by hard assignment to the cluster it belongs to,
which is given by the nearest visual word in the codebook accord-
ing to Euclidean distance. This vector quantisation of features is
not only important for obtaining suitable image representation for
classification but also reduces noise due to minor differences in the
descriptor vectors of corresponding features. By assigning each fea-
ture of an image to the appropriate visual word and accumulating
the word-counts one can obtain a histogram over visual words (bag-
of-words). This histogram gives a highly generalized representa-
tion of the image content due to its inherent robustness to noise and
changes in scale, rotation and viewpoint. Since our codebook con-
sist of 2k visual words, the transformation yields a 2k-dimensional
feature vector per image. The image features are now represented
in a form which allows for integration into any common classifier
algorithm.

Classification: Support Vector Machines (SVMs) [19] are re-
garded as one of the most powerful classification tools. SVMs at-
tempt to determine an optimal linear separation of classes by max-
imising the margin of separation between classes. Using this cri-
terion, optimisation results in a separator that can be recovered at
any time using only a few data points: namely those lying nearest
to the boundary of separation (and hence determining the margin).
These data points are aptly called support vectors and can be used to
identify the class of a new observation. While the described method
fails in cases of linearly inseparable data, separation is still attain-
able via a higher-dimensional hyperplane. To be able to distinguish
between classes by a maximal margin separator, the data points are
projected into a higher dimensional space using a suitable predefined

non-linear kernel function. The most suitable kernel type and opti-
mal parameter settings for this study were determined empirically.
In our initial experimentation, the Gaussian Radial Bases Function
(RBF) kernel [20] yielded the optimal classification results and is
thus used in the remainder of this work. The RBF kernel function is
defined using the following formula:

K(x, y) = e
− ‖x−y‖

2

2σ2 (1)

where σ is the kernel width. Intuitively, the centre of the RBF rep-
resents the support vector, while σ determines the area of influence
that this support vector will have over the data space. Increasing σ
increases the neighbourhood of influence of the support vector, re-
sulting in smoother, more regular decision boundaries. The optimal
choice of σ is data dependent and one runs the risk of overfitting if
σ is chosen to be too small [20]. The performance of an SVM clas-
sifier is heavily influenced by both the choice of kernel as well as
the kernel parameters [19]. We thus measure the performance of the
SVM classifier over a range of values for σ and represent the results
on a Receiver Operating Characteristic (ROC) curve [21].

3. RESULTS

The aforementioned techniques were tested on a dataset of 2500
pseudo-coloured X-ray baggage images obtained by scanning
packed handbags with a dual-view, single-energy Rapiscan 620DV
scanner. In these pseudo-coloured X-ray images darker pixels indi-
cate areas where the density of materials is high (see Figure 1). Two
images (one frontal and one side view image) were generated for ev-
ery scanned item. The bags contained various types of threat objects
including handguns, knives, explosives and bottles filled with fluids
of varying densities as well as everyday items representing clutter
(see Figure 3).

For the purposes of this work, we considered the specific prob-
lem of firearm recognition. A total of 850 firearm images were man-
ually cropped from both the frontal and side-view scans and used as
positive instances. Importantly, the positive training data captured
a large range of variation in the type, size, orientation and degree
of occlusion of the firearm. Approximately 10 000 images without



This study Bastan et al. [6]

Pre-processing foreground segmentation foreground segmentation
Interest point detection SURF DoG + Harris
Descriptor SURF SIFT
Codebook generation class-specific online k-means clustering traditional k-means
Size of codebook (number of clusters) 1200 200
Vector quantisation Hard assignment Soft assignment
Classifier SVM SVM
Kernel Gaussian RBF Histogram intersection
Experimentation 3-fold cross validation Separate training and test sets
Scanner Dual-view, single energy X-ray (2 images per item) Quad-view dual-energy X-ray (12 images per item)
Data 850 pos; 10000 neg 208 training (52 pos; 156 neg) 764 test (40 pos; 724 neg)

Table 2. Comparison of proposed approach and method of Bastan et al. [6]

firearms were automatically generated from randomly cropped re-
gions of baggage images (with some added hand-cropped regions)
and used as negative examples. Figure 3 shows several instances
of positive and negative training data. To avoid overfitting the data,
these images were used in a 3-fold cross validation framework. We
ensured that different X-ray images of the same packed baggage
were not included in both training and testing sets.

The SURF method was applied for feature detection and de-
scription, Figure 2 shows two example images where rotation and
scale invariant SURF features have been detected on two thresholded
images. Online k-means clustering of features with k = 600 was
performed separately on the firearm and background images, gener-
ating two class-specific sets of visual words containing 600 words
each, which gives a total of 1200 visual words in the codebook.

Performance evaluation was performed using the standard Re-
ceiver Operating Characteristic (ROC) curve [21] which plots the
True Positive Rate (TPR) as a function of the False Positive Rate
(FPR) as the free parameter (RBF kernel width σ) is varied. The
ROC curve in Figure 4(a) shows the results of the 3-fold cross valida-
tion testing. The optimal operating point yielded a correct detection
rate of 99.07% at a false positive rate of 4.31%. In our threat item
detection application high true positive rates are favoured, therefore
when reporting an optimal operating point we select a value from
the ROC curve which favours a high TPR. The excellent results of
the classifier indicate that the distinctive image features have been
generalised successfully by the clustering algorithm and the SVM
classifier established a good separation of classes.

We also show preliminary results for the detection of mobile
phones using the same method outlined for firearms. A smaller
dataset of 350 mobile images and 1700 background images were
used in a 3-fold cross-validation. Mobile phones are tiny in size com-
pared to firearms and therefore tend to contain less features. Also,
their colour is prevalent among objects in the background clutter
causing thresholding to be less effective in background removal. De-
spite these difficulties we still obtained very good results for mobile
phone detection and show the ROC curve in Figure 4(b), obtained
again by altering the RBF kernel width σ.

4. DISCUSSION AND RELATED WORK

The most similar method to our own within previously published lit-
erature on threat item detection in airport baggage is Bastan et al.’s
system [6]. While the performance analysis tools differ, the afore-
mentioned result (TPR = 99.07%) is a significant improvement on

the optimal results (TPR = 70%) presented in their work. While both
studies employ a BoW approach using an SVM classifier, the two ap-
proaches differ in their particulars (see Table 2). The first significant
differences occur in the feature detection (SURF vs. a combination
of DoG and Harris) and description (SURF vs. SIFT) techniques
and the choice of the SVM kernel (RBF vs. intersection). While it
is accepted that variations in these components may have a signif-
icant impact on the overall performance, Bastan et al. [6] indicate
that their choice of components is based on prior experimentation,
which ultimately ruled out SURF descriptors and the RBF kernel.
It is therefore unlikely that our improved classification results stem
from our choice of feature representation and/or SVM kernel.

We thus believe that the core of our improved classification re-
sults lies in our novel codebook priming technique achieved by class-
specific clustering. By enforcing the separation of classes in the bag-
of-words representation scheme, the classification process is dramat-
ically simplified. This priming, coupled with the use of a larger code-
book (1200 visual words vs. 200 visual words), ultimately leads to
superior results. In general larger codebooks yield better classifica-
tion results [8, 17].

The final significant difference is data-related. Although the
images used by Bastan et al. [6] (quad-view, dual-energy X-rays)
should theoretically provide more useful information than the im-
ages used in our work (dual-view, single-energy X-rays), we use
a much larger data set (∼11,000 images vs. ∼1000 images). Our
results are also possibly more reliable than the result published by
Bastan et al. [6] as we employ 3-fold cross-validation as opposed to
using a training and a test set. The importance of the k-fold cross-
validation approach in performance evaluation is widely known [22].
We believe that the diversity and richness of our data, as well as more
efficient use of this data has further contributed to our superior re-
sults.

While Bastan et al. [6] claim that their initial experimentation
indicated inferior performance for SURF features and an RBF ker-
nel SVM classifier, we have shown that even superior results can be
obtained using these components in a similar classification frame-
work by making more efficient use of the available data and priming
the BoW representation in order to simplify classification. We also
presented good classification results on mobile phones. We expect
that using X-ray imagery capable of capturing more images per item
from different viewpoints, as used by Bastan et al. [6], will further
improve our results. Our experiments indicate that local feature-
based classification techniques are powerful tools for the recognition
of firearms and other objects in X-ray images.

Computational costs: Given that our ultimate aim is to in-



troduce automated object recognition methods such as the one de-
scribed in this study to the domain of airport security, it is important
to ensure the feasibility of our proposed methods for real time execu-
tion. With this in mind, our choice of algorithm placed preference on
efficient methods provided that accuracy was not compromised. To
reduce any unnecessary computational cost we employed a faster al-
ternative to the SIFT feature detector: the SURF algorithm. Further-
more, as opposed to the traditional offline k-means, we implemented
an online k-means clustering algorithm. This algorithm reduces the
required memory and is suitable for clustering large datasets. Fi-
nally, when feature descriptor encoding was performed using a hard
assignment of features to clusters as opposed to a soft assignment
thereby keeping the computational costs to a minimum.

Importantly, the most computationally expensive components of
our method (clustering and classifier training) are done offline. Dur-
ing testing, when a new image is presented to the system, 3 subunits
have to be executed: 1) detecting local features in the image; 2) con-
structing the BoW representation via a nearest neighbour lookup of
each feature descriptor in the codebook and 3) feeding the BoW his-
togram to the pre-trained SVM classifier. With an optimised imple-
mentation, these units can all be executed in real time and numerous
systems have applied these or similar methods successfully even for
large-scale problems [7, 17, 23]. Calculating the SURF features of
an image of size 800x640 takes approximately 0.61s [13]. Our C++
implementations performed on a standard PC (Intel Core 2 1.83GHz
CPU with 1 GB RAM) yielded processing times of 1.5s per image
for SURF feature calculations; 0.03s per image for the BoW con-
struction and 0.003s per image for the SVM prediction.

5. CONCLUSION

This study has presented a powerful image classification technique
for object detection in X-ray baggage imagery using primed visual
words in an SVM classifier framework. Primed visual words are
obtained through class-specific clustering of feature descriptors and
used to encode images in our bag-of-words model. This differs from
the traditional approach, which combines the feature set of positive
and negative classes during the clustering process when generating
a codebook. Our novel modification to the clustering stage of the
traditional bag-of-words framework creates an image representation
scheme that further facilitates the separation of positive and negative
class examples.

The proposed method has been evaluated on a firearm recogni-
tion problem and yielded excellent results with an optimal operat-
ing point of 99.07% TPR and 4.31% FPR on the ROC curve. The
method presented here thus significantly outperforms the previous
work of Bastan et al. [6]. We have also shown promising results
in the more challenging task of detecting mobile phones. Finally,
we have demonstrated the value of establishing large, representative
data sets for improving classification results. The excellent perfor-
mance of our firearm classifier indicates the potential of this tech-
nique in threat object detection.

Future work will consider the classification of additional object
types, the use of different X-ray imagery (capturing more images
per item) and an investigation into further optimisation techniques
to facilitate the real time application of the proposed method.
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