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Abstract

We address the Unsupervised Domain Adaptation (UDA) problem in image classification from

a new perspective. In contrast to most existing works which either align the data distributions or

learn domain-invariant features, we directly learn a unified classifier for both the source and target

domains in the high-dimensional homogeneous feature space without explicit domain alignment.

To this end, we employ the effective Selective Pseudo-Labelling (SPL) technique to take advan-

tage of the unlabelled samples in the target domain. Surprisingly, data distribution discrepancy

across the source and target domains can be well handled by a computationally simple classifier

(e.g., a shallow Multi-Layer Perceptron) trained in the original feature space. Besides, we pro-

pose a novel generative model norm-AE to generate synthetic features for the target domain as

a data augmentation strategy to enhance the classifier training. Experimental results on several

benchmark datasets demonstrate the pseudo-labelling strategy itself can lead to comparable per-

formance to many state-of-the-art methods whilst the use of norm-AE for feature augmentation

can further improve the performance in most cases. As a result, our proposed methods (i.e. naive-

SPL and norm-AE-SPL) can achieve comparable performance with state-of-the-art methods with

the average accuracy of 93.4% and 90.4% on Office-Caltech and ImageCLEF-DA datasets, and

achieve competitive performance on Digits, Office31 and Office-Home datasets with the average

accuracy of 97.2%, 87.6% and 68.6% respectively.
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1. Introduction

In the last decade, impressive progress has been made in supervised image classification

with the advancement of deep learning [17] and the availability of large scale image datasets

such as ImageNet [8]. One key to the success of deep neural networks in image classification

is the access of sufficient annotated images which are usually unavailable in many real-world

applications such as image classification in the invisible spectrum, medical image classification,

etc.. To address the issues of training data scarcity in practice, a variety of techniques (e.g., semi-

supervised learning [69], zero-shot learning [60, 61, 27, 46], domain adaptation [56, 67, 58, 31,

28]) can be employed based on the availability of varied training data resources. Among these,

Unsupervised Domain Adaptation (UDA) assumes the access of labelled data only from the

source domain where the labelled data are easier to obtain but the data distribution is different

from that of the target domain in which the task of interest resides. As a result, a classifier

trained on the labelled source domain suffers from a significant performance drop when directly

applied to the target domain. Unsupervised domain adaptation problems are common in real-

world applications. For example, recognizing objects in X-ray baggage screening imagery [57]

can be a challenging task due to the difficulty of data collection in this domain but regular images

are much easier to obtain. In this case, domain adaptation techniques can play a crucial role in

making the most of large-scale regular images from the source domain and limited X-ray images

from the target domain.

Existing UDA approaches try to align the source and domain data distributions by feature

transformation (e.g., projecting features into a subspace) [59, 5, 58] or learning domain-invariant

features from images via specially designed deep neural networks [32, 26]. Subsequently, sim-

ple classifiers such as Nearest Neighbours (NN) or Support Vector Machines (SVM) can be

employed in the learned domain-invariant feature space. Although impressive performance has

been achieved in prior works by aligning source and target domains in a learned feature space

[58], we argue that the need for explicit domain alignment before learning a classifier can be

relaxed for good performance in UDA problems. To justify this argument, we demonstrate that

a unified classifier can be trained for both source and target domain data in the original high-

dimensional homogeneous feature space due to the blessing of dimensionality [18] despite the

existence of domain shift. From this perspective, the key challenge of UDA problems is the lack

of labelled data in the target domain for supervised learning.
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Figure 1: An illustration of how data augmentation by synthesizing source and target domain data can benefit unsuper-

vised domain adaptation. Left: classifier trained with labelled source-domain data only; Right: classifier trained with

real and synthetic data from both domains.

In this paper, we address unsupervised domain adaptation for image classification from the

perspective of target domain data pseudo-labelling and generation. On one hand, we investigate

the effectiveness of pseudo labelling techniques without any explicit source and target data dis-

tribution alignment. Pseudo labelling techniques have been employed in prior work [59, 5, 58]

but its effectiveness has been underestimated. Our experiments demonstrate surprisingly strong

classification performance on UDA benchmark datasets with a simple classifier (i.e. a linear

two-layer Multi-Layer Perceptron for image features or a Convolutional Neural Network for

digit images) trained on labelled source data and pseudo-labelled target data. Besides, we pro-

pose a novel L2-normalisation regularised Autoencoder (i.e. norm-AE) to generate synthetic

labelled target samples for training the classifier. The proposed norm-AE is characterized by

L2-normalized parameters (i.e. mean and variance) of latent code distribution as the substitute of

the KL-Divergence regularisation in the vanilla VAE. With this data augmentation strategy, the

performance of UDA can be enhanced as illustrated in Figure 1.

The contributions of our work can be summarised as follows:

– we demonstrate that a specially designed pseudo-labelling strategy can achieve surpris-
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ingly strong performance on commonly used benchmark datasets for unsupervised domain

adaptation; the performance is even comparable with or better than many more complex

methods on Digits (97.2%), Office-Caltech (92.8%) and ImageCLEF-DA (89.4%).

– we demonstrate the proposed pseudo-labelling strategy is superior to those in [5] and [58]

within our proposed framework.

– we propose a generative model adapted from VAE to further improve the performance of

unsupervised domain adaptation by generating synthetic features for the target domain; the

average accuracy is improved by 0.6%, 1.7%, 1% and 2.9% on Office-Caltech, Office31,

ImageCLEF-DA and Office-Home datasets respectively.

– we present a thorough set of comparative experiments and ablation studies to demonstrate

the proposed methods can achieve competitive performance on several benchmark datasets

(i.e. Digits, Office-Caltech, Office31, ImageCLEF-DA and Office-Home).

2. Related Work

In this section, we review existing work related to ours. We first review existing approaches

to UDA problems which fall into two main categories: feature transformation approaches [34,

35, 48, 65, 14, 49, 55] and deep feature learning approaches [12, 32, 13, 36, 37, 4, 41, 66, 33].

Subsequently, we discuss the use of pseudo-labelling and data augmentation techniques in UDA

for image classification.

2.1. Unsupervised Domain Adaptation

Feature transformation approaches aim to transform the source domain and/or target domain

features such that transformed source and target domain data can be aligned. As such the clas-

sifier learned from labelled source data can be directly applied to target data. Usually, linear

transformations are used by learning the projection matrices with different optimization objec-

tives and a kernel trick can help to explore the non-linear relations between source and target

domain data if necessary. The most commonly employed objective for unsupervised domain

adaptation is to align data distributions in source and target domains [34, 35]. For this purpose,
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Maximum Mean Discrepancy (MMD) based distribution matching has been used to reduce dif-

ferences of the marginal distributions [35], conditional distributions or both [34, 55]. Correla-

tion alignment (CORAL) [48] transforms source domain features to minimize domain shift by

aligning the second-order statistics of source and target distributions. Manifold Embedded Dis-

tribution Alignment (MEDA) [55] learns a domain-invariant classifier based on the transformed

features where the transformation aims to align both the marginal and conditional distributions

with quantitative account for their relative importance.

In contrast to the above-mentioned approaches that learn one feature transformation matrix

for either source domain or both domains, Joint Geometrical and Statistical Alignment (JGSA)

[65] learns two coupled projections that project the source and target domain data into a joint

subspace where the geometrical and distribution shifts are reduced simultaneously. Apart from

the distribution alignment, recent feature transformation based approaches also promote the dis-

criminative properties in the transformed features. Scatter Component Analysis (SCA) [14] aims

to learn a feature transformation such that the transformed data from different domains have sim-

ilar scattering and the labelled data are well separated. A Linear Discriminant Analysis (LDA)

framework was proposed in [38] by learning class-specific projections. Similarly, Li et al. [30]

proposed an approach to feature transformation towards Domain Invariant and Class Discrimi-

native (DICD) features.

Deep feature learning approaches to domain adaptation were inspired by the success of deep

Convolutional Neural Networks (CNN) in visual recognition [29]. Attempts have been made to

take advantage of the powerful representation learning capability of CNN combined with a vari-

ety of feature learning objectives. Most deep feature learning approaches aim to learn domain-

invariant features from raw image data in source and target domains in an end-to-end framework.

Specifically, the objectives of feature transformation approaches have been incorporated in the

deep learning models. To learn the domain-invariant features through a deep CNN, the gra-

dient reversal layer was proposed in [12] and used in other deep feature learning approaches

[13, 41, 66] as well. The gradient reversal layer connects the feature extraction layers and the

domain classifier layers. During backpropagation, the gradients of this layer multiply a certain

negative constant to ensure the feature distributions over two domains are made similar (as in-

distinguishable as possible for the domain classifier). Deep Adaptation Networks (DAN) [32]

and Residual Transfer Network (RTN) [36] aim to learn transferable features from two domains
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by matching the domain distributions of multiple hidden layer features based on MMD. Deep

CORAL [50] integrates the idea of CORAL [48] into a deep CNN framework to learn features

with favoured properties (i.e. aligned correlations over source and target distributions for mul-

tiple layer activations). These approaches only consider the alignment of marginal distributions

and cannot ensure the separability of target data. Deep Reconstruction Classification Network

(DRCN) [15] trains a feature learning model using labelled source data and unlabelled target data

in the supervised and unsupervised learning manners respectively. More recently, the prevalent

Generative Adversarial Network (GAN) loss has been employed in Adversarial Discriminative

Domain Adaption (ADDA) [51] with promising results.

2.2. UDA With Pseudo-Labelling

To address the issue of lack of labelled data in the target domain, pseudo-labelling has been

used by many existing approaches. Pseudo-labels are assigned to unlabelled samples in the

target domain by a classifier. Hard labelling assigns a pseudo-label ŷ to each unlabelled sample

without considering the confidence [34, 65, 55]. The pseudo-labelled target samples together

with labelled source samples are used to learn an improved classifier. By repeating these two

steps, the classifier and accuracy of pseudo-labels can be improved gradually. Hard pseudo-

labelling relies heavily on good initialisation otherwise it is likely to be stuck in local optima.

To address this issue, soft labelling was employed in [41]. Instead of assigning a hard label to

a sample, soft labelling assigns the probability of belonging to each class to a sample. In the

Multi-Adversarial Domain Adaptation (MADA) approach [41], the soft pseudo-label of a target

sample is used to determine how much this sample should be attended to different class-specific

domain discriminators.

Selective pseudo-labelling is the other way to alleviate the mislabelling issue [66, 59, 5].

Similar to the soft labelling strategy, selective pseudo-labelling also takes into consideration the

confidence in target sample labelling but a different manner. Selective pseudo-labelling picks up

a subset of target samples and assigns them with pseudo labels with high confidence to avoid

potential mislabelling. The idea is that at the beginning the classifier is weak so that only a

small fraction of the target samples can be correctly classified. When the classifier gets stronger

after each iteration of learning, more target samples can be correctly classified hence should be

pseudo-labelled and participate in the learning process. An easy-to-hard strategy was employed
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in [5]. Target samples whose similarity scores are higher than a threshold are selected for pseudo-

labelling and this threshold is updated after each iteration of learning so that more unlabelled

target samples can be selected. A class-wise sample selection strategy was proposed in [59, 58].

Samples are selected for each class independently so that pseudo-labelled target samples will

contribute to the alignment of conditional distribution for each class during learning. In this

paper, we propose a novel pseudo-label selection strategy that is superior to those used in [58]

within the proposed framework.

2.3. UDA With Data Augmentation

Data augmentation has drawn attention in existing works for UDA. For example, Hsu et

al. [23] proposed a novel augmentation-based method to generate labelled data with a similar

distribution to the target domain for robust speech recognition. A vanilla VAE was trained in an

unsupervised way to learn a disentangled latent representation of speech which can be modified

for generating expected target domain data. However, the disentangled image attributes in the

latent space are a challenging goal to achieve. Instead, we employ a conditional AutoEncoder

(AE) and the domain information can be incorporated and fed into the decoder for target domain

sample generation. Volpi et al. [54] performed data augmentation in the feature space by devising

a feature generator trained with a Conditional Generative Adversarial Network (CGAN). Our

approach is similar to this in the sense of feature augmentation whilst we aim to augment data

by feature transformation across domains rather than from random noises. Huang et al. [24]

proposed GAN based models for image-to-image translation and evaluated the performance in

object detection rather than image classification which is our focus in this work. Lv et al. [39]

also utilised GAN to generate target domain data given class labels to improve the classifier

training. Following these studies, in our work, a novel norm-AE is proposed to generate target

domain samples by feature transformation across domains and its effectiveness is demonstrated

through comparative experiments.

Variational Autoencoder (VAE) has been a prevalent generative model for data generation

and it has been used for UDA in literature [23, 22, 62, 25, 64, 6]. Hou et al. [22] aim to generate

synthetic target-domain data with VAEs trained domain-wisely. Subsequently, the higher-level

and lower-level layers of the decoders for source and target domains are cross-stacked to form

new VAEs which can be used to transform images from one domain to the other. However, the

effectiveness of the idea was only validated on digits data in [22] and is questionable for more
7



complicated image classification tasks. In contrast to pixel-level image generation, a more reli-

able alternative is employed in our work which aims to generate image features with a simplified

VAE model. Wang et al.[62] also used VAE in the feature space for speech signal representation

learning. However, their work focused on the latent code vectors z generated by the encoder

of VAE whilst our goal is to generate synthetic features in the original feature space. We also

investigated the effect of latent code vectors in our preliminary experiments but did not observe

favourable performance enhancement in the image classification tasks. Chen et al. [6] utilized

two-stream Wasserstein Autoencoders to map the data from four domains (i.e. real source, real

target, synthetic source and synthetic target) into a common subspace towards better classifica-

tion performance. By contrast, our work also concern data from these four domains whilst the

classification is carried out in the original feature space without the need of learning a latent

space.

3. Problem Formulation

Before presenting our method, we describe the standard problem formulation of UDA for

image classification. Given a labelled dataset Ds = {(xxxs
i ,y

s
i )}, i = 1,2, ...,ns from the source

domain S, xxxs
i ∈Rdx

represents the feature vector of i-th labelled sample in the source domain, dx

is the feature dimension and ys
i ∈ Ys denotes the corresponding label. UDA aims to classify an

unlabelled data setDt = {xxxt
i}, i = 1,2, ...,nt from the target domain T , where xxxt

i ∈Rdx
represents

the feature vector in the target domain. The target label space Y t is equal to the source label

space Ys. It is assumed that both the labelled source domain data Ds and the unlabelled target

domain data Dt are available for model learning. As a result, most existing UDA approaches

are evaluated in the transductive learning setting. Cases of inductive learning settings where

evaluation on new target data that are not accessed during training are also considered in the

literature [51, 33, 5, 43]. Our proposed methods apply to both settings.

4. Proposed Method

In this section, we first present a computationally simple approach to UDA for classification

problems. The approach is based on the hypothesis a unified classifier for both source and

target domains can be trained in the original homogeneous feature space despite the domain
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shift across domains by supervised learning. Pseudo-labelled target domain data are combined

with labelled source domain data to train the unified classifier for both source and target domains.

Subsequently, we describe our proposed generative model norm-AE which is used to generate

synthetic features to augment the training data for classifier training.

4.1. Revisiting Selective Pseudo-Labelling

We aim to learn a unified classifier y = f (xxx) for both source and target domains. The classi-

fier f (xxx) can be implemented as a shallow CNN model for image classification when the input

xxx are raw images or a linear two-layer Multi-Layer Perceptron (MLP, containing an input layer

and an output layer) when the input xxx are image features. As the first step, we train the classifier

with labelled source domain data. The trained classifier is subsequently used to classify unla-

belled target domain samples and get their pseudo labels ŷt
i, i = 1,2, ...,nt . The confidence score

s(ŷt
i) of the pseudo label ŷt

i can also be obtained from the softmax layer of the classifier. The

pseudo-labelled target domain samples are combined with the labelled source domain samples

to re-train the classifier so that the classifier can gain the capability of separating target domain

samples. The updated classifier is again used to update the pseudo-labels of target domain sam-

ples. This process can be repeated for multiple iterations towards an optimal classifier and better

classification performance.

One key to the above pseudo-labelling strategy is the selection of pseudo-labelled target

domain samples for training in each iteration. Instead of using all the pseudo-labelled target

samples for classifier training, it has been proved that progressively selecting a fraction of the

target domain samples for training is beneficial [5, 58]. Following the previous works in [59]

and [58], we select pseudo-labelled target samples with top confidence scores class-wisely and

add them to the training data set in each iteration. Specifically, we consider the pseudo-labels

class-wisely and select top-K confident pseudo-labelled target domain samples for each class.

Distinct from existing selective pseudo-labelling in [59] and [58], the number of selected

pseudo-labelled target domain samples N(c,k) for c-th class in k-th iteration is determined as

follows:

N(c,k) = min{ k
T

nt

C
, n̂t(c,k)} (1)

where T is the number of iterations empirically set as 10 in our experiments; nt is the number

of target domain samples; C is the number of classes and n̂t(c,k) denotes the number of target
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Algorithm 1 The method of naive Selective Pseudo-Labelling (naive-SPL)
Input: Labelled source data set Ds = {(xxxs

i ,y
s
i )}, i = 1,2, ...,ns and unlabelled target data set

Dt = {xxxt
i}, i = 1,2, ...,nt , number of iteration T .

Output: A unified classifier f (xxx) and predicted labels {ŷt} for target domain samples.

1: initialise k = 0;

2: Training the classifier f (xxx) using only source data Ds;

3: Assign pseudo labels for all target data;

4: while k < T do

5: k← k+1;

6: Select a subset of pseudo-labelled target data Sk ∈ D̂t using Eq. (1);

7: Re-training the classifier using Ds and Sk;

8: Update pseudo labels for all target data.

9: end while

domain samples predicted to be from c-th classes in k-th iteration. In contrast, N(c,k) is set as

(kn̂t(c,k))/T in previous work [58]. That is, the number of selected pseudo-labelled samples

N(c,k) is proportional to the number of predicted pseudo-labels n̂t(c,k) for a specific class. As a

result, there can be a large number of selected pseudo-labelled samples for some classes whilst

very limited pseudo-labelled samples for other classes. Our pseudo-label selection strategy in-

dicated in Eq.(1) allows balanced pseudo-labelled target samples across different classes. This

naive Selective Pseudo-Labelling (naive-SPL) approach is summarized in Algorithm 1.

4.2. Data Augmentation Using norm-AE

As opposed to the existing methods of UDA, our proposed naive-SPL does not aim to explic-

itly address the distribution discrepancy. Instead, it focuses on the issue of training data scarcity.

Following this direction, we propose a novel norm-AE model to further address the training data

scarcity issue in the target domain by generating synthetic target domain features from labelled

source domain ones.

Our proposed generative model is inspired by conditional VAE (CVAE) [47] and is condi-

tioned on domain labels rather than class labels. As illustrated in Figure 2, given an input sample

xxx from the source or target domain, the encoder aims to learn a posterior distribution qΦ(zzz|xxx,d)
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Figure 2: The diagram of norm-AE used for data augmentation. The encoder and decoder are conditioned on the domain

label s or t. Given a source domain sample xs as the input, the model generates reconstructed samples x̂s and x̂st in the

source and target domains respectively. Similarly, the model can take a target domain sample xt as the input and generates

x̂t and x̂ts.

from which the latent encoding vector zzz can be sampled and subsequently fed into the decoder

to reconstruct the input feature x̂xx, where d denotes the domain label condition (i.e. d ∈ {s, t}).

The decoder can be parameterized by pθ (xxx|zzz,d). As a result, the model is expected to generate

synthetic target domain samples from those in the source domain and vice versa. To this end,

we make some essential modifications to the traditional CVAE in two aspects: replacing the

Kullback-Leibler divergence regularization by L2 normalization and training the model using

paired source and target domain samples.

In traditional CVAE, the loss function is composed of two components as follows:

LCVAE(Φ,θ ;xxx) =Lrecon
(
xxx, x̂xx)

+DKL
(
N (µxxx,σxxx)||N (000, III)

) (2)

where the first terms represents the reconstruction error Lrecon
(
xxx, x̂xx) = ||xxx− x̂xx||22 and the second

term is the KL-divergence between the learned posterior distribution and the standard Normal

distribution. The KL-divergence is a regularization term forcing the learned latent codes zzz to

follow the standard Normal distribution. This regularization enables the learned model to gain

the capability of generating meaningful data from a random latent code zzz sampled from the

standard Normal distribution.

One limitation of VAE is the approximation of the posterior to a Gaussian prior [7]. Al-

though convenient, the Gaussian prior encourages points to cluster close to the origin. This is
11



particularly problematic when the data are from multiple classes [7]. An ideal prior would only

stimulate the variance of the posterior without forcing its mean to be close to the origin. For

this purpose, we can simply remove the KL-divergence loss from Eq.(2) and the model degrades

into an AutoEncoder with deterministic latent code (i.e. the variance tends to be zero for good

reconstruction of xxx). To promote the discriminative property of the learned latent code, we apply

L2 normalisation to the outputs of the encoder µ and log(σ2).

Applying L2 to the latent code of AutoEncoder has been proved to be beneficial to the clus-

tering accuracy [1]. On the other hand, to avoid learning deterministic latent code, we also need

to constrain the variance of the posterior. There exist various options for constraints on the vari-

ances. For example, we can force the variance close to 1 for each dimension in the latent space.

We choose to apply L2 normalisation to the log of variance vectors to allow for more flexibility.

As a result, the variance of each dimension in the latent space is forced within the range [1/e,e].

In practice, however, there might be little difference between these two choices of constraints on

variances as shown in our ablation study in Section 5.4.

To summarise, the encoder learns a posterior probability distribution qΦ(zzz|xxx,d) =N (µxxx,σxxx).

From the posterior distribution, we can sample a latent code zzz given a sample xxx and the decoder

try to reconstruct the sample by learning the probability distribution pθ (xxx|zzz,d). During training,

the objective of our generative model is to maximise the probability of the training data X [10]:

log p(X) = Ezzz∼q[log pθ (xxx|zzz,d)] (3)

In practice, pθ (xxx|zzz) is chosen depending on the modeling of the input data but is often taken as

a simple distribution (e.g., fixed variance Gaussian) [3]. In the case of fixed variance Gaussian,

we have

Lrecon = ||xxx−µθ (zzz)||22 = ||xxx− x̂xx||22 (4)

To enable the capability of generating synthetic data across domains, we train the norm-AE in

a novel way. Specifically, we use paired data {xxxs,xxxt} from source and target domains that belong

to the same class. The class information for unlabelled target domain data can be obtained by

pseudo-labelling as described in the previous section. The paired data are fed into the norm-AE

and a set of reconstructions are generated as {x̂xxsss, x̂xxst , x̂xxttt , x̂xxts} (c.f. Figure 2). The loss function is
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formulated as:
Lnorm−AE(Φ,θ ;xxx) = (Lrecon

(
xxxsss, x̂xxsss)+Lrecon(xxxttt , x̂xxttt)

)
+
(
Lcross recon(xxxsss, x̂xxts)+Lcross recon(xxxttt , x̂xxst)

) (5)

The first two terms measure the reconstruction errors for source and target domain samples

respectively. The last two terms are cross-domain reconstruction errors, i.e., Lcross recon(xxx, x̂xx) =

||xxx− x̂xx||22. Although the samples in the pair of {xxxsss, x̂xxts} or {xxxttt , x̂xxst} are from the same class, they

are not necessarily two views of the same image. To reduce the cross-domain reconstruction er-

rors, the encoder has to preserve class information in the latent code space. As a result, the use of

cross-domain reconstruction loss Lcross recon facilitates the model to generate class discriminative

synthetic data across domains.

The norm-AE model is incorporated into the selective pseudo-labelling framework described

in the previous section so that the classifier training can be enhanced by combining the real

training data and synthetic data generated by norm-AE. The norm-AE is trained with labelled

source domain data and pseudo-labelled target domain data in each iteration. The method of our

proposed norm-AE-SPL is summarized in Algorithm 2 where the differences from Algorithm 1

are highlighted in bold.

4.3. Model Architectures and Computational Complexity

The computational cost of Algorithm 1 depends on the classifier training itself and the num-

ber of iterations T . In our experiments, we use a CNN architecture from [43] as the classifier

which consists of two convolutional layers and three fully connected layers for digit classifica-

tion. For image classification datasets, we use deep features (i.e. ResNet50) and a linear MLP

consisting of only the input and output layers which are computationally efficient.

The method norm-AE-SPL in Algorithm 2 involves one additional step of training the norm-

AE model. The encoder and decoder are implemented as 3-layer MLP (i.e. dx → 512→ dz

and dz → 512→ dx) with ReLU layers and a dropout rate of 0.5 applied on the intermediate

activations. dx and dz are the dimensionality of input xxx and latent code zzz respectively. The value

of dz is set as 64 in our experiments.

5. Experiments and Results

In this section, we describe our experiments on commonly used datasets for unsupervised

domain adaptation for image classification (i.e. Digits, Office-Caltech [16], Office31 [42],
13



Algorithm 2 The method of SPL with data augmentation by norm-AE (norm-AE-SPL)
Input: Labelled source data set Ds = {(xxxs

i ,y
s
i )}, i = 1,2, ...,ns and unlabelled target data set

Dt = {xxxt
i}, i = 1,2, ...,nt , number of iteration T .

Output: A unified classifier f (x) and predicted labels {ŷt} for target domain samples.

1: initialise k = 0;

2: Training the classifier f (x) using only source data Ds;

3: Assign pseudo labels for all target data;

4: while k < T do

5: k← k+1;

6: Select a subset of pseudo-labelled target data Sk ∈ D̂t using Eq. (1);

7: Training the norm-AE model using Ds and Sk by minimizing the loss in Eq.(5);

8: Re-training the classifier using real data from Ds and Sk, and their corresponding syn-

thetic data generated by norm-AE;

9: Update pseudo labels for all target data.

10: end while

ImageCLEF-DA [2] and Office-Home [53]). Our approach is firstly compared with state-of-the-

art UDA approaches to evaluate its effectiveness. An ablation study is conducted to demonstrate

the effects of different components and hyper-parameters in our approach. Finally, we investigate

how different hyper-parameters affect performance.

5.1. Datasets

To make a thorough evaluation, we conduct experiments on five commonly used datasets

including one digit classification dataset and four image classification datasets. Exemplar images

from different domains are shown in Figure 3 for four datasets. The Office-Caltech dataset is not

shown since it consists of the same 3 domains as those in Office31 and the Caltech domain in

ImageCLEF-DA. More details of these datasets are described as follows.

Digit classification is a commonly used benchmark for unsupervised domain adaptation. We

follow existing works [51, 33, 5, 43] and consider three domain adaptation tasks (i.e. MNIST

→ USPS, USPS→ MNIST and MNIST→ SVHN) on three digit datasets: MNIST, USPS and

SVHN. There are 60,000/10,000 images for training/testing in MNIST, 7,291/2,007 in USPS,
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Figure 3: Exemplar images from different domains of four datasets used in our experiments (The Office-Caltech dataset

consists of the same domains as Office31 and one additional Caltech domain; exemplar images for the Office-Home

dataset (d) originate from [53]; best viewed in color).

and 73,257/26,032 in SVHN. In each dataset, there are 10 classes of digit 0–9.

Office-Caltech [16] consists of four domains: Amazon (A, images downloaded from online

merchants), Webcam (W, low-resolution images by a web camera), DSLR (D, high-resolution

images by a digital SLR camera) and Caltech-256 (C). Ten common classes from all four

domains are used: backpack, bike, calculator, headphone, computer-keyboard, laptop-101,

computer-monitor, computer-mouse, coffee-mug, and video-projector. There are 2533 images

in total with 8 to 151 images per category per domain.

Office31 [42] consists of three domains: Amazon (A), Webcam (W) and DSLR (D). There

are 31 common classes for all three domains containing 4,110 images in total.

ImageCLEF-DA [2] consists of four domains. We follow the existing works [67] using three

of them in our experiments: Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012

(P). There are 12 classes and 50 images for each class in each domain.

Office-Home [53] is another dataset recently released for evaluation of domain adaptation

algorithms. It consists of four different domains: Artistic images (A), Clipart (C), Product images

(P) and Real-World images (R). There are 65 object classes in each domain with a total number

15



Table 1: Classification Accuracy (%) of UDA on Digits dataset (M: MNIST, U: USPS, S: SVHN).

Method M→ U U→M M→ S Average

ADDA [51] 89.4 90.1 76.0 85.2

GTA [44] 95.3 90.8 92.4 92.8

MCD [43] 96.5 94.1 96.2 95.6

MCD+CAT [9] 96.3 95.2 97.1 96.3

rRevGrad+CAT [9] 94.0 96.0 98.8 96.3

CTSN [70] 96.1 97.3 - -

CAN [68] 95.8 94.6 - -

SHOT [31] 98.0 98.4 98.9 98.4

Baseline (w/o selection) 30.1 51.3 83.1 54.8

naive-SPL* (overall selection) 88.2 91.7 90.7 90.2

naive-SPL (Ours) 95.8 97.7 98.0 97.2

norm-AE-SPL (Ours) 95.8 97.7 98.0 97.2

of 15,588 images.

5.2. Experimental Setting

The algorithm is implemented in PyTorch1. For digit classification, we use the same CNN

model designed by [43]. In each domain adaptation task, the labelled training data from the

source domain and the unlabelled training data from the target domain are used to train the

classifier which is subsequently evaluated on the test data from the target domain. As a result, the

evaluation on this dataset is done in an inductive learning setting. For the Office-Caltech dataset,

we use deep features Decaf6 [11] (activations of the 6th fully connected layer of a convolutional

neural network trained on ImageNet, d = 4096) which were commonly used in existing works for

1Code is available: https://github.com/hellowangqian/UDA-norm-AE
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Table 2: Classification Accuracy (%) on Office-Caltech dataset using Decaf6 features. Each column displays the results

of a pair of source→ target setting.

Method C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Average

DDC[52] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 84.9 100.0 81.1 89.5 98.2 88.2

DAN[32] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100.0 80.3 90.0 98.5 90.1

DCORAL[50] 92.4 91.1 91.4 84.7 - - 79.3 - - 82.8 - - -

CORAL[49] 92.0 80.0 84.7 83.2 74.6 84.1 75.5 81.2 100.0 76.8 85.5 99.3 84.7

SCA[14] 89.5 85.4 87.9 78.8 75.9 85.4 74.8 86.1 100.0 78.1 90.0 98.6 85.9

JGSA[65] 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100.0 86.2 92.0 99.7 90.0

MEDA[55] 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8

CAPLS [59] 90.8 85.4 95.5 86.1 87.1 94.9 88.2 92.3 100.0 88.8 93.0 100.0 91.8

SPL [58] 92.7 93.2 98.7 87.4 95.3 89.2 87.0 92.0 100.0 88.6 92.9 98.6 93.0

Han et al. [19] 90.8 87.5 89.8 87.4 81.0 86.6 85.0 91.3 99.4 85.8 90.4 99.0 89.5

DS-c [20] 92.5 81.0 89.8 85.3 81.7 87.3 81.4 78.0 97.5 85.0 90.6 99.0 87.4

Baseline (w/o selection) 91.8 80.5 87.5 84.7 76.1 84.3 74.1 78.3 100.0 77.3 85.3 98.3 84.9

naive-SPL* (overall selection) 92.6 89.2 95.4 87.5 89.5 93.0 87.9 91.9 100.0 89.1 92.9 99.3 92.4

naive-SPL (Ours) 94.1 92.9 88.5 86.9 95.6 91.3 87.5 94.1 100.0 88.7 94.1 99.3 92.8

norm-AE-SPL (Ours) 94.0 97.6 90.8 88.1 97.3 92.0 88.4 93.0 99.4 87.9 93.0 99.3 93.4

a fair comparison with the state of the arts. For the other three datasets, ResNet50 [21] features

(d = 2048) are used in our experiments to allow a direct comparison with other methods.

5.3. Comparison with State-of-the-Art Approaches

We compare our approaches with the most competitive methods including those based on

deep features (extracted using deep models such as ResNet50 pre-trained on ImageNet) and deep

learning models using pre-trained ResNet50 as the backbones. The classification accuracy of our

approaches and the comparative ones are shown in Tables 1-5 in terms of each combination of

“source” → “target” domains and the average accuracy over all different combinations. The

classification accuracy is calculated as the number of correctly predicted samples over the total

number of test samples (i.e. per-image accuracy). For all experiments in this section, each task

is repeated five times with random seeds set as 0-4 to calculate the mean accuracy for this task.

We use bold and underlined fonts to indicate the best and the second-best results respectively in

each column of the tables.

Our approaches without and with data augmentation are denoted as naive-SPL and norm-

AE-SPL, respectively. Besides, we conduct an ablation study to investigate the effect of different

pseudo-label selection strategies. For this purpose, we consider two more related methods in our

experiments. One is denoted as Baseline (w/o selection) which uses all pseudo-labelled target
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Table 3: Classification Accuracy (%) on Office31 dataset using either ResNet50 features or ResNet50 based deep models.

Method A→W D→W W→D A→D D→A W→A Avg

RTN[36] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

MADA[41] 90.0 97.4 99.6 87.8 70.3 66.4 85.2

MEDA[55] 86.2 97.2 99.4 85.3 72.4 74.0 85.7

GTA [45] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

iCAN[66] 92.5 98.8 100.0 90.1 72.1 69.9 87.2

CDAN-E[33] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

JDDA[4] 82.6 95.2 99.7 79.8 57.4 66.7 80.2

SymNets[67] 90.8 98.8 100.0 93.9 74.6 72.5 88.4

TADA [63] 94.3 98.7 99.8 91.6 72.9 73.0 88.4

CAPLS [59] 90.6 98.6 99.6 88.6 75.4 76.3 88.2

SPL [58] 92.7 98.7 99.8 93.0 76.4 76.8 89.6

CTSN [70] 90.6 98.6 99.9 89.3 73.7 74.1 81.9

Han et al. [19] 77.0 92.1 95.8 81.1 62.7 63.6 78.7

DS-c [20] 71.6 95.7 99.6 76.9 67.8 67.3 79.8

Baseline (w/o selection) 73.3 97.5 99.6 75.8 68.0 67.6 80.3

naive-SPL* (overall selection) 84.6 98.9 99.8 81.4 70.4 70.6 84.3

naive-SPL (Ours) 88.6 98.1 99.9 82.0 73.6 73.4 85.9

norm-AE-SPL (Ours) 88.6 98.7 97.1 93.0 73.8 74.2 87.6

domain samples without selection for classifier training. The other dubbed as naive-SPL* (over-

all selection) is adapted from our proposed naive-SPL by replacing the pseudo-label selection

strategy in Eq.(1) with that used in [59]. This pseudo label selection strategy selects the most

confident pseudo-labelled target samples without considering the balance across different classes

hence may lead to sub-optimal self-training performance.

Table 1 shows the performance of different UDA approaches on the Digits dataset. The

classifier is implemented by a shallow CNN model (c.f. Section 4.3) and is trained on raw

images. Our proposed naive-SPL achieves an average accuracy of 97.2% over three commonly
18



Table 4: Classification Accuracy (%) on ImageCLEF-DA dataset using either ResNet50 features or ResNet50 based deep

models.

Method I→P P→I I→C C→I C→P P→C Avg

RTN[36] 75.6 86.8 95.3 86.9 72.7 92.2 84.9

MADA[41] 75.0 87.9 96.0 88.8 75.2 92.2 85.8

iCAN[66] 79.5 89.7 94.7 89.9 78.5 92.0 87.4

CDAN-E[33] 77.7 90.7 97.7 91.3 74.2 94.3 87.7

SymNets[67] 80.2 93.6 97.0 93.4 78.7 96.4 89.9

MEDA[55] 79.7 92.5 95.7 92.2 78.5 95.5 89.0

SPL [58] 78.3 94.5 96.7 95.7 80.5 96.3 90.3

Han et al. [19] 76.8 80.8 93.2 89.8 72.8 85.3 83.1

DS-c [20] 78.7 86.7 92.8 87.3 70.4 91.3 84.5

CAN [68] 78.5 91.8 95.5 91.6 76.4 95.2 88.2

Baseline (w/o selection) 79.1 89.2 94.0 86.0 69.9 92.4 85.1

naive-SPL* (overall selection) 77.0 90.7 95.9 92.1 73.4 93.7 87.1

naive-SPL (Ours) 80.0 91.5 96.2 94.3 79.1 95.6 89.4

norm-AE-SPL (Ours) 80.3 93.9 96.9 94.6 80.4 96.3 90.4

Table 5: Classification Accuracy (%) on Office-Home dataset using either ResNet50 features or ResNet50 based deep

models.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average

JAN[37] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-E [33] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

MEDA[55] 54.6 75.2 77.0 56.5 72.8 72.3 59.0 51.9 78.2 67.7 57.2 81.8 67.0

SymNets [67] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

TADA [63] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

CAPLS [59] 56.2 78.3 80.2 66.0 75.4 78.4 66.4 53.2 81.1 71.6 56.1 84.3 70.6

SPL [58] 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0

CAN [68] 50.4 69.8 75.9 58.7 70.4 69.8 57.8 47.6 76.0 70.2 54.5 79.9 65.2

Baseline (w/o selection) 43.1 65.1 73.7 50.7 64.4 64.6 53.8 41.6 73.8 62.7 44.3 77.4 59.6

naive-SPL* (overall selection) 44.1 72.5 77.7 52.0 70.0 70.5 52.4 39.4 77.3 62.3 44.3 79.4 61.8

naive-SPL (Ours) 52.0 74.2 79.1 56.1 74.4 74.1 56.8 49.0 78.1 61.4 52.4 80.5 65.7

norm-AE-SPL (Ours) 51.6 76.0 80.6 63.0 77.0 78.4 62.9 50.7 81.2 66.3 52.8 82.9 68.6
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used domain adaptation tasks which is better than all the comparative methods except SHOT [31]

with an average accuracy of 98.4%. The method norm-AE-SPL in this experiment is based on the

features extracted by the classifier trained for naive-SPL. As we can see, there is no performance

improvement when data augmentation by norm-AE is employed in this case. This is because

our selective pseudo-labelling strategy described in Section 4.1 enables the CNN model to learn

domain-invariant features from source and target domains. As a result, the domain shift between

the source- and target- domain features used to train the norm-AE model is negligible hence the

synthetic features generated by norm-AE can not provide additional information for classifier

training.

In many real-world applications, however, much deeper and more complicated CNN models

than the one used for digit classification are required to extract image features. Training large

CNN models on both source and target domain data can be computationally expensive and un-

necessary [58]. In the following experiments on real-world image datasets, we use pre-trained

(on ImageNet only) ResNet50 as the feature extractor to extract features of source and target

domain images. As shown in Figure 5, a data distribution shift can be observed between source

and target domain data. In these cases, our proposed approach including the data augmenta-

tion model norm-AE demonstrates its effectiveness in improving the classification accuracy as

described in the following paragraphs.

Tables 2-5 demonstrate the results on image classification datasets. Our proposed naive-SPL

can already achieve quite good performance with the average accuracy of 92.8% on Office-

Caltech, 85.9% on Office31, 89.4% on ImageCLEF-DA and 65.7% on Office-Home. These

results are comparable with many more complex UDA approaches, especially on Office-Caltech

and ImageCLEF-DA datasets. This validates the effectiveness of our proposed selective pseudo-

labelling strategy since naive-SPL is no more than a simple classifier trained with labelled source

and pseudo-labelled target domain samples iteratively. With the use of our proposed data aug-

mentation method, norm-AE-SPL improves the performance consistently on all four image clas-

sification datasets. As a result, our proposed norm-AE-SPL achieves the best average accuracy

of 93.4% and 90.4% on Office-Caltech and ImageCLEF-DA datasets, respectively. On the other

two datasets, norm-AE-SPL also performs comparably well with most approaches except CAPLS

[59] and SPL [58]. It is noteworthy that both of them employ the dimensionality reduction algo-

rithm Locality Preserving Projection (LPP) to learn a latent subspace where source- and target-
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domain data can be well aligned. These methods require to solve the eigenvalue problems and

the computational cost is subject to the number of samples in both domains. As a result, they

are not suitable for large-scale applications whilst our proposed method does not have such con-

straints. Besides, our method is intrinsically different from those based on the domain alignment

in that we assume a unified classifier can be learned in the original homogeneous feature space

despite the existence of the domain shift across the source and target domains.

We conduct an ablation study by comparing the performance of Baseline (w/o selection),

naive-SPL* (overall selection) and naive-SPL and some consistent conclusions can be drawn

from this ablation study. Firstly, the Baseline method using all pseudo-labelled target-domain

data without selection is always inferior to the other two methods with selective pseudo-labelling.

Specifically, the performance gaps between the Baseline (w/o selection) and naive-SPL* (over-

all selection) methods in terms of the average classification accuracy are 7.5%, 4.0%, 2.0%

and 2.2% on Office-Caltech, Office31, ImageCLEF-DA and Office-Home datasets respectively.

These results demonstrate that selecting the most confident pseudo-labels progressively is of vi-

tal importance to classifier training. On the other hand, the pseudo-label selection strategy used

in [58] is inferior to the proposed alternative described in Section 4.1 as naive-SPL outperforms

naive-SPL* (overall selection) by margins of 0.4%, 1.6%, 2.3% and 3.9% on four image classi-

fication datasets respectively.

5.4. Ablation studies on model architecture

We conduct additional ablation studies to validate the effectiveness of the proposed norm-AE

architecture. To this end, we investigate following variants of our proposed method. They share

the architecture (i.e. an encoder-decoder architecture with cross-domain and within-domain re-

construction flows) but differ in the forms of latent code regularisation. They also employ the

same selective pseudo labelling strategy as the proposed norm-AE-SPL does.

• AE: a vanilla AutoEncoder is employed together with the selective pseudo labelling. The

latent code output by the encoder µxxx (concatenated with the domain label d ∈ {s, t}) is

directly fed into the decoder for the reconstructed input x̂xx.

• AE w/ L2-norm: inspired by [1], we apply L2 normalisation to the latent code of the

AutoEncoder in this method and keep other settings the same as AE.
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Figure 4: Effect of the number of iterations T .

• AE w/ noises: we add random noise to the latent code of the AutoEncoder and keep other

settings the same as AE.

• VAE: a VAE is employed together with the selective pseudo labelling. Particularly, we use

the same flow to generate synthetic data as our proposed norm-AE, i.e., the latent code zzz

is sampled from a Normal distribution N (µxxx,σxxx) for any given input xxx. The difference

between this VAE method and norm-AE lies in how the posterior distributionN (µxxx,σxxx) is

constrained during training. Note that we do not sample zzz from a standard normal distribu-

tion for data generation since the data generated in this way has no labels for subsequent

supervised classifier training.

• mean-Norm-AE: this is a variant of norm-AE with the L2 normalisation applied only to

the mean µxxx and the variances σxxx are not constrained during training.

• mean-Norm-AE w/ variance loss: this is a variant of norm-AE with the mean µxxx L2

normalised and the variances σxxx forced to be close to ones.

The results of the ablation studies are shown in Table 6. In general, all the investigated vari-

ants of our norm-AE method can achieve reasonably good performance thanks to the selective
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Table 6: Results of the ablation study on the norm-AE architecture.

Method L2 mean L2 log(σ2) zzz sampling others Office-Caltech Office31 Image-CLEF Office-Home

AE 8 8 8 - 92.6 ± 0.3 87.2 ± 0.2 89.9 ± 0.1 67.4 ± 0.1

AE w/ L2-norm 4 8 8 - 92.6 ± 0.2 87.4 ± 0.3 89.9 ± 0.2 67.5 ± 0.1

AE w/ noises 8 8 8 noised zzz 92.2 ± 0.1 84.2 ± 0.2 87.1 ± 0.1 62.6 ± 0.1

VAE 8 8 4 KLD loss 93.0 ± 0.5 87.3 ± 0.1 90.4 ± 0.1 68.7 ± 0.1

mean-Norm-AE 4 8 4 - 92.6 ± 0.2 86.7 ± 0.2 89.8 ± 0.1 68.6 ± 0.1

mean-Norm-AE w/ variance loss 4 8 4 log(σ2) loss 92.8 ± 0.2 87.7 ± 0.3 90.4 ± 0.1 68.7 ± 0.1

norm-AE 4 4 4 - 93.4 ± 0.1 87.6 ± 0.1 90.4 ± 0.1 68.6 ± 0.1

pseudo-labeling strategy. By a closer look at the results in Table 6, we can draw some interest-

ing conclusions. Firstly, AE and its variants (i.e. AE w/ L2-norm and AE w/ noises) perform

consistently worse than our norm-AE. It is likely to be that AE learns deterministic latent codes,

hence the cross-domain reconstruction is restricted. In contrast, our norm-AE learns the poste-

rior distribution for the latent codes and has higher capacity of modeling domain invariant latent

codes for each class. Secondly, by comparing VAE with norm-AE, we can see that norm-AE

performs slightly better on two out of four datasets. As we have discussed in Section 4.2, VAE

has the limitation of forcing latent codes of all classes close to the origin whilst our norm-AE

projects them onto the sphere for better separability. Finally, we can see that applying regulari-

sation on the variances of the learned posterior distribution is necessary. Without regularisation

on the variances, the method mean-Norm-AE performs worse than norm-AE on three out of four

datasets. This is because the model tends to learn near zero variance for good reconstruction

and degrades into a vanilla AE. Besides, an alternative regularisation term (e.g., log(σ2) → 0)

can lead to comparably good performance with norm-AE which applies the L2 normalisation on

variances.

5.5. Effects of the Hyper-parameter T

In Algorithms 1 and 2, the number of iterations T is a hyper-parameter which was set as 10

throughout our main experiments. In this experiment, we investigate how the value of T affects

the performance of naive-SPL and norm-AE-SPL. To this end, we set the value of T to be 1, 3,

5, 10, 15, 20 respectively and calculate the average accuracy over some representative domain

adaptation tasks. Specifically, we consider all three tasks for Digits, three tasks C→ A/D/W for

Office-Caltech, two tasks A→W/D for Office31, two tasks P→ I/C for ImageCLEF-DA and

three tasks A→C/P/R for Office-Home. Each task is repeated three times with random seeds
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Figure 5: Visualization of real and synthetic features using t-SNE (best viewed in color). (a) data distribution of four

domains (i.e. real source, real target, synthetic source, synthetic target); (b) real and synthetic data distribution in the

source domain (colours represent different classes); (c) real and synthetic data distribution in the target domain (colours

represent different classes).

set as 0, 1 and 2.

The results are shown in Figure 4 in which the average accuracy over considered tasks are

reported for five datasets. As we can see, the number of iterations T has a negligible effect

on the performance when it is greater than 5 for both naive-SPL and norm-AE-SPL. For the

Digits dataset, significant performance improvement can be observed when T increases from 1

to 5 whilst for other image classification datasets, the optimal value of T varies from 1, 3 to 5

with subtle differences. To summarize, our approaches are not sensitive to hyper-parameters and

perform well enough with a relatively small number of iterations.

5.6. Data Visualization

For qualitative evaluation, we use the t-SNE technique [40] to visualize the real and synthetic

features in Figure 5. The domain adaptation task C→W in the Office-Caltech dataset is taken

as an exemplar. The 4096-dimensional features of real and synthetic data from both domains are

mapped into 2-dimensional projections in an unsupervised way by preserving data distributions

[40].

Firstly, we visualize real data points from the source (red circles) and target (blue squares)

domains in Figure 5(a). It is clear data from source and target domains are distributed in different

regions. In the same plot, we also visualize the synthetic features generated by our proposed

model for the source (cyan crosses) and target (green +) domains. We can see the synthetic data

points generated for the source/target domain are well aligned with the real data points in the
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corresponding domain thanks to the domain conditions of the decoder in our norm-AE model.

Secondly, we examine the class discriminative property of synthetic data in the source and

target domains in Figure 5(b) and (c) respectively. In the source domain, we use circles and

crosses to represent the real and synthetic data points respectively whilst different colours are

used for ten classes. Similarly, squares and crosses are used for real and synthetic data points

and colours represent different classes in the target domain. We can see that real data points from

the same class are distributed in a cluster thanks to the discriminative features extracted by deep

CNN models pre-trained on ImageNet. The synthetic data generated by our proposed model

are also distributed in clusters of different classes. This demonstrates our proposed method can

generate synthetic data which are both domain and class discriminative.

Finally, a closer inspection of Figure 5(b) and (c) also tells us that the synthetic data clusters

are not perfectly aligned with their corresponding clusters of real data (i.e. circles/squares and

crosses of the same colour are not well aligned). Such misalignment is more severe in the target

domain due to the fact there is no labelled data in this domain. We believe slight misalignment

leads to over-complete data distribution [27] and is beneficial to learning a more robust classifier.

However, significant distribution shifts can hurt the performance. This demonstrates the limita-

tion of our proposed method in generating reliable class-discriminative synthetic data and leads

us to improve the model in our future work.

6. Conclusion

In this paper, we proposed novel approaches to the unsupervised domain adaptation prob-

lem from a novel perspective and achieved impressive experimental results with the average

classification accuracy of 97.2%, 93.4%, 87.6%, 90.4% and 68.6% on Digits, Office-Caltech,

Office31, ImageCLEF-DA and Office-Home datasets, respectively. Instead of pursuing explicit

domain alignment, we train a unified classifier for both source and target domain data in a high-

dimensional feature space despite the existence of distribution discrepancy across domains. We

proposed a novel pseudo-label selection strategy outperforming the existing ones in the literature

[5, 59, 58]. With this specially designed pseudo-labelling strategy, our method naive-SPL can

achieve strong performance which is impressive given that it only uses a typical shallow CNN

for digit classification and a linear two-layer MLP for image classification. Moreover, our pro-

posed norm-AE-SPL can improve the performance by generating synthetic features for training
25



data augmentation. To conclude, our work provides fresh insights into unsupervised domain

adaptation for the community.
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