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Abstract

In recent years, deep learning based approaches have substantially improved the per-
formance of face recognition. Most existing deep learning techniques work well, but
neglect effective utilization of face correlation information. The resulting performance
loss is noteworthy for personal appearance variations caused by factors such as illumi-
nation, pose, occlusion, and misalignment. We believe that face correlation information
should be introduced to solve this network performance problem originating from by
intra-personal variations. Obviously, different poses of same person have similar feature
structure, and even different people may have some similar facial sub-regions. We pro-
pose a graph representation based on the face correlation information that is embedded
via the sparse reconstruction and deep learning within an irregular domain. The pro-
posed method achieves high recognition rates of 99.58% on the benchmark LFW facial
evaluation database.

1 Introduction

Face recognition has become one of the hottest topics in the area of computer vision and
pattern recognition. It has been extensively applied in identity validation and recognition.
Many researchers have been studying new face recognition algorithms [1, 4, 7, 17, 23, 24]
for decades. The visual signature of the human face has clear advantages over other bio-
metric information because it is natural and easy to handle face images. However, that main
problems in face recognition include highly overlapping intra and inter identity distributions
due to naturally occurring variations in pose, age, expression, occlusion, and external imag-
ing factors such as variations of scene illumination.

A decade ago, some face recognition approaches focus on the sparse coding. Olshausen
and Field [9] have indicated that neural networks in the human vision system perform sparse
coding of the learned features, qualitatively which is similar to the receptive fields of simple
cells in V1 (V1 is the primary visual cortex). Subsequently, a generation of facial recogni-
tion algorithms are enabled via the sparse coding for finding the succinct representations of
the stimuli. Given unlabeled input data only, sparse coding learns basis functions that cap-
ture the high-level features. For face recognition, Shan [5] developed a hierarchical model
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called Recursive ICA (RICA), which captures nonlinear statistical structures of the visual in-
puts, that cannot be captured by a single layer of ICA. Shan [12] also performed variational
recognition tasks by sparse coding learnt from natural images. However, the sparse coding
model has a problem of lower recognition accuracy in general. Now, with the advent of deep
learning, the recognition accuracy has been significantly improved. We think the concept of
sparse has not been completely abandoned; in fact, it can be embedded to the deep learning
strategy which still achieves good performance in some cases such as occlusion.

Deep learning networks have attracted more and more attention in face recognition [10].
Face recognition accuracy has been incredibly boosted with better deep network architec-
tures and supervisory learning methods in recent years. Sun [18] proposed a supervised
learning method of deep face representation. His approach greatly reduced the intra-personal
variations in the face representation. Subsequently, DeepID [19] and DeepFace [21, 22] are
proposed to learn a discriminative deep face representation in large-scale face identifica-
tion. In DeepID2+ [20], Sun has developed a learning method of deep face representation
through joint face identification-verification (adding verification supervisory signals). The
goal of this approach is to absorb the significant intra-personal variations in face representa-
tion. GoogLeNet [16] based FaceNet [11] is proposed to train a deep network by triplet loss.
The learnt features are mapped into a compact Euclidean space for evaluating face similarity.
Among the state-of-the-art deep neural networks, ResNet [6], GoogLeNet and VGG [13] are
ranked in the 3-top in general image classification competition. However, the DeepID series
of networks is less accurate than these 3-top networks, because depth of DeepID series is
much shallower. However, in this paper, we optimize DeepID2+ to learn the features for
face recognition because we just need to verify the ability of deep sparse graph.

Although a large-scale face dataset is used to improve the performance, intra- and extra-
correlations of face parts (e.g. eyes, noses, etc.,) are not taken into consideration. We think
this kind of face correlation information should be implicit within optimising neural network
for the performance gain. This poses a new problem of convolutional neural network with
irregular spatial domain.

As discussed above, we need to verify the performance gain by using a sparse graph.
At first each face image is divided into several feature blocks. Each vertex in the graph
corresponds to the feature block respectively. Face correlation information is used to link
any two vertices. In order to optimize the deep neural network, we should introduce some
structural information from local to global. For example, each face image is divided into /
blocks as Fig. 1. The graph is constructed to describe the sparse constraints with local and
global structures as shown in Fig. 2. For different images, the maximum degree vertex of
each subgraph is related to face correlation of the corresponding feature blocks. We find that
the maximum degree vertex is the most representative feature block. Finally, we obtain the
whole graph of all face images for each individual.

A novel approach named Deep Sparse Graph Neural Networks (DSGNN) is proposed.
Each feature block is sparsely reconstructed by the sparse coding based on the graph. On
learning the sparse coding using universal nature images, the common dictionary is extracted.
Subsequently, the sparse coding is guided by graph constraints for smoother expression of
face information. The resulting reconstructed face sparse graph is an input to the deep neural
network. As shown in Fig. 3, the similar feature blocks are connected by checking the
common weights corresponding to face correlation.

From the experiments, the proposed DSGNN is significantly better than the previous
DeeplD or DeepFace for face recognition. Compared to other state-of-the-art methods [11,
14, 15, 20, 21, 22], our method is more accurate than most of the other methods, and is
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Image Y1 Divided Y1 Image Y2 Divided Yz

Figure 1: Face images are divided into / blocks. In this case, the input image is first resized
to 120 120 pixels, next divided into 15X 15 blocks. Size of each block is 8 x 8 pixels, where
I=225.

comparable to FaceNet [21].
Taken together, our contributions are as follows:

1. We construct a graph using face correlation information and obtain the reconstructed
face sparse graph.

2. We construct deep sparse graph neural networks, which introduces the concept of face
sparse graph, and improves the recognition accuracy.

The rest of the paper is organized as follows. Section 2 describes the structure of the
face graph. Subsequently, Section 3 shows the sparse reconstruction of face graph. Detail of
our proposed method is described in the Section 4. Simulation and the results are shown in
Section 5. Finally, conclusions and future work are discussed in Section 6.
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Figure 2: Face graph G = (V,E). In this example, each vertex is connected to a 1-nearest
neighbor related vertex.

2 Graph Construction

In this section, we show our graph representation of face images. Here we use the Euclidean
distance to calculate the correlation between two different feature blocks.
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Previous layer k Next layer k+1

Figure 3: Depiction of relation between graph and convolution layer. The intra- graph (show
as green graph) is shared convolute to the next layer. The graph of the next layer is the
abstraction of the previous layer graph.
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Figure 4: This view shows the graph sparse reconstruction with different color channels.
Richer image information can be obtained under the different color channels, compared with
the previous works.

2.1 Graph Definition

Let us denote a face image dataset {Y1,Y>,..., Y1} with L images. The graph construction
produces G = (V, E) consisting of vertex set V =V UV, U...U V[ where each vertex subset
V, is associated with the sample Y;. As mentioned before, in order to construct the V;, we
divide each face image into / blocks as shown in Fig. 1. As a result, the vertex set V; can
be expressed as V; = {],v7,...,v/}. Obviously, for i-th block of /-th face image, the vertex
v§ corresponds to an M-dimensional vector y} € RM. Take E to be a set of undirected edges
as E = {eqplva,us € V}, where a and § are used to assign two different feature blocks, that
ise,pel{@Ni=1,2,.,1;l=1,2,..,1}. In G, the graph should contain global information
across all face images. The similar vertices (blocks) are connected by edges.

2.2 Graph Structure

Each edge e of an undirected graph G is associated to a weight w. In V, we suppose two
different vertices v, and vg correspond to two vectors y, and yg. A weight w,g means a
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Figure 5: Deep sparse graph neural networks. In this case, the framework was designed with
a simple supervised learning network such as DeepID2+. Of course, other state-of-the-art
deep neural networks (VGG, GoogLeNet and ResNet) can also be applied and optimized.
DSGNN have 5 convolutional layers, and the filters are utilized by cubic B-spline fast filter
with vector of control points. In each deep sparse graph convolutional layer, the input of
previous layer is sparse graph. And, supervisory signals are connected to convolutional layer
(after pooling layer), while the lower convolutional layers can trained with back-propagated
from higher layers. The final full-connection feature extraction is used for face recognition.

correlation between two different vertices v, and vg. If wep > 0, then we suppose there is an
edge e, between two vertices. In other words the corresponding feature vectors belong to
the same category. The edge set should be redefined by w,g. Next, we have to define the
weight weg.

Here, the mutual k-NN [2] is simply used to estimate the weight in the graph. Due to the
fact that in the mutual £-NN, all vertices have a degree upper-bounded by k. This property
helps to produce no vertices with extremely high degree in the graph. In V, if vy (or vg) is
among the mutual k-NN of vg (or vy), the weight wqg is introduced by a Gaussian kernel
function as follows:

lya—ypl3
wap={ € 2 . if vy € Ni(vg) oruvg € Ni(vo), (1)
0, otherwise,

where o is the bandwidth parameter of the kernel.

Ni(ve) CV and Ni(yg) C V denote the vertex subsets for the k-nearest neighbors of the v,
and vg in V. Edge set is defined as E* = {ezﬁlva € Ni(vg) V ug € Ni(ve),Va,vg € V). After this
setting, the graph is undirected and the adjacent relations between two vectors is symmetric.

3 Sparse Graph of Feature Blocks

In this section, we firstly set up the common feature hypothesis to focus on the sparse coding
of the universal natural images and then extract the basis functions in common. The basis
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functions are taken into the sparse coding so that the face sparse graph can be reconstructed.
The graph-guided sparse reconstruction can be developed by a concise representation of the
facial features.

Given a data matrix Y € RMX(XD where each column represents a data vertex y;' e RM
on the graph. Let D = (d;,d>,....,dy) € RM*N be a common dictionary. Here d,, is the basic
function with N > M (obviously, solution of Y = DS is not unique. N > M is the basic
condition to obtain the optimal solution). The target of the sparse coding is to find an sparse
coefficient matrix S = (s},s%, ...,s’L) € RVXUIXD) Thjg optimization problem can be written as
follows:

1 2
min > {[¥ = DS|: + ISl @

where the parameter A is a scalar regularization parameter that balances the trade off between
reconstruction error and sparsity, and ||.||% represents the Frobenius norm.

The sparse coefficient S is regularized by the /;-norm, sparsity is estimated by blocks in
D. The structure of sparse graph is missing in Eq. (2). The structured regularization term can
realize better performance for the final goal. Therefore, we use a feature fusion which simply
means that some similar features are connected by using block correlation. Here, we impose
the correlation between columns in Y, which is reflected in the correlation between the rows
in S by embedding function %Ze;ﬁeE*,Mﬁwaﬁllsa —sgl3 = ISAST |7, where A € RUEXDX(IxD
is an unnormalized graph Laplacian matrix and ||.||7, is trace norm. Obviously, A = U—-W is
an symmetric positive-semidefinite matrix, where U = diag(Z,+pWwqp) is the degree matrix;
W = (wgp) is the symmetric weight matrix.

In order to integrate the graph structure into our sparse coding, the loss function Eq. (2)
can be rewritten as follows:

!
min 5 ¥ = DS|; + 1Sl + YISAST . 3)

where 7 is the regularization parameter and ||.||2,; is the /> ;-norm regularizer that measure the
distance in feature space via the />-norm regularizer. The summation over different vertices
of graph is performed via the /;-norm.

Next we introduce a common feature hypothesis into the basis functions of the sparse
coding in common from the universal natural images (used for training). For the human vi-
sual system, one notable advantage is that human beings can recognize one person at a simple
glance of one face image, while most computer vision face recognition techniques depend
on a huge number of face images for initial training. Therefore, the concept of the common
feature hypothesis suggests that all visual stimuli share common characteristics such that the
knowledge from one set of visual stimuli can be applied to a completely different problem.
Finally, we get the graph of sparse reconstruction, each vertex v corresponds to yl Dsl

4 Deep Sparse Graph Neural Network

In this section, we describe the proposed DSGNN which can optimize the high-level fea-
tures. Our network is more robust to pose, illumination variations and occlusions. The state-
of-the-art deep neural networks (e.g. VGG, GoogLeNet, ResNet) are very powerful, but the
computational cost is very high if the network is deep, and they have the risk of over-fitting.
For the above networks, we consider the optimal method of a fundamental framework - Con-
volutional Neural Networks (CNNs). CNNSs are a biologically inspired class of deep learning
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models that is trained end to end from raw pixel values to classifier outputs through restricted
connectivity between layers (local filters), parameter sharing (convolutions) and special local
invariance-building neurons (max pooling). Here, we consider that the convolution of a filter
across the spatial domain is non-trivial within the irregular spatial domain [8]. Here, we use
the graph to describe the spatial correlation between the vertices and perform convolution by
the multiplication in the spectral graph domain.

As we discussed, graph G* = (V, E*) consists of vertices V and the edges E*, wygp is the
weight of an edge e(*lﬁ between two vertices v, and vg and each vertex v;' corresponds to vector
§'§. A = U - W is an unnormalized Laplacian matrix; D= diag(Zo+pwep) is the degree matrix;
W= (wqp) is the symmetric weight matrix. Since Aisa symmetric positive-semidefinite ma-
trix that admits an eigenvalue decomposition A= CI)A(I)T, where the orthonormal eigenval-
ues ® = (qﬁl1 s ¢>lz, ¢f ),and A = diag(/lll s /112, /l{ ) is the diagonal matrix of the corresponding
non-negative eigenvalues. Now, we can describe a convolution construction from layer & to
layer k + 1, without pooling layer:

< P Ta
yZ+1,l = 6(2p=1(DFk’quq) yZJ)’ (4)

where, p = 1,2,..., P is an index of k-layer vector if’l, q=1,2,...,01is an index of k + 1-layer
vector §'Z L Fy 4 is a diagonal matrix of spectral multipliers representing a learnt filter in
the frequency domain, and ¢ is a nonlinearity applied to the vertex-wise function values.
Here, we can minimize the loss function to learn the optimal diagonal matrix Fy for each
layer in the following:
min iz £(F (YD), O + K IRl 5)

where f(Y;) is an output of the network, O; is the ground-truth label defined as O; = (o;1, 012, ...

B¢ and o;. = 1 identify the /-th sample face belongs to the c-th person class.

Furthermore, if we use low-rank sparse to replace mutual k-NN, we can get a more gen-
eralized deep sparse graph. The regularized optimization problem is formulated as following
as:

min Tz, £FCY D), 00+ nllWille + VWl +KZ IFE (6)

We discuss and optimization of the DeepID2+ core architectures, including the supervi-
sory signals to full connection layers. The supervisory signals help to learn better mid-level
features and optimize the deep neural network. The DSGNN is trained by the sparse graph-
guide reconstructed face images that are conductive to smoothing and robust face blocks.
Add the network takes batch blocks as graph input. These batch blocks are selected by dif-
ferent positions, channels and poses such that networks could learn sufficient information.

5 Experiments

In this section, we verify face recognition accuracy using benchmark face databases, includ-
ing LFW to demonstrate the performance. Here, the CeleFaces+ dataset [19] and the WDRef
dataset [3] are merged to train the network. The merged dataset includes 290,000 faces of
12,000 persons. 2000 peoples are trained by Joint Bayesian model [3]. Finally, the 6,000
face pairs of LFW are tested for face recognition. For regularization-parameters, we use a
5-fold cross validation on the training dataset to tune the parameters A and y. At first, a face

»0IC
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image is represented on a 15 x 15 2D-blocks, and each block size is 8 X 8 pixels. We con-
struct a mutual 6-NN graph of the 2D-block with 15% = 225 nodes (for max pooling of size 4,
we need to add some null-nodes to backfill missing nodes, for example, 225 + 31 mod 4 = 0).
Our hyper-parameters are borrowed from the TensorFlow tutorial with DeepID2+ [20], val-
idating a set of 2000 peoples to determine learning rates and training iterations, momentum
of 0.9. Our proposed DSGNN achieves higher accuracy 99.58% for face recognition. The
accuracy is comparable with previous state-of-the-art methods on LFW are shown in Ta-
ble. 1. To compare with DeepID2+ nets and DeepID3, DSGNN improve approximately
0.11% and 0.05% average accuracies over DeepID2+ and DeepID3, respectively. The pro-
posed network achieves nearly 70% speedup compared to DeepID2+ (221ms of 25 patches)
with implementation on an NVIDIA 780 GPU.

Table 1: Face recognition rates (complete face test) on LFW database.

Method rates

High-dim LBP 0.9517
DeepFace 0.9735
FaceNet [11] 0.9963
Parkhi’s approach [10] | 0.9865
DeepID2+ [20] 0.9947
DeepID3 [15] 0.9953
DSGNN 0.9958

6 Conclusions

We proposed a deep sparse graph neural network (DSGNN) for face recognition. The exper-
iments validated the high performance of proposed network on the LFW reference database,
exceeding prior work in the field. The face representations of graph sparse reconstruction
are more sparse and robust to background noise and occlusion. The DSGNN is more highly
selective to person identities and can reduce the number of parameters without losing the
accuracy. This work shows that the neural network of a deep sparse graph is feasible within
face recognition, and it is believed that there remains substantial room for extension of this
concept. Here, due to the limitations of the DeepID framework itself, the accuracy of our
network does not exceed that of FaceNet, we will try to optimize the GoogleNet and ResNet
framework based on the deep sparse graph in future work. This is obviously feasible, as
features of each block can be extracted, but the network will be more complex and difficult
to optimise in consideration of training costs.
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