Multi-view Object Detection Using Epipolar Constraints within Cluttered X-Ray Security Imagery

Brian K. S. Isaac-Medina*, Chris G. Willcocks*, Toby P. Breckon†
Department of {*Computer Science, †Engineering}, Durham University, UK

Issue: The use of information from multiple views in X-ray security object detection

Approach: Epipolar constraints are imposed to improve object detection in uncalibrated multi-view X-ray baggage imagery (i-iv).

(i) **Fundamental matrix** is estimated using ground truth object-level bounding box centroids as point correspondences.

\[x = \hat{x} + \Delta x + \Psi_b \]
\[\Delta x \sim N(\mu, \sigma^2) \]

(ii) **Detection distance to the epipolar line.** Given a detection \(\mathcal{B} \) in one view, the distance \(d' \) of the centroid \(\mathbf{x}' \) of \(\mathcal{B}' \) in the second view is modeled as \(d'(\mathbf{x}', \mathbf{f}) \sim N(\mu_e, \sigma^2_e) \).

(iii) **Epipolar detection confidence.** The distance to the epipolar line is used to get an epipolar detection confidence.

\[p(d') =
\text{erfc} \left(\frac{d' - \mu_e}{\sqrt{2}\sigma_e} \right) \]

(iv) **Multi-view Filtering.** The detection confidence is multiplied by \(p(d') \) and filtered by a threshold before Non Maximum Suppression (NMS).

Results
- **Detector:** YOLOv3\(^{[1]}\). **Metric:** MS COCO\(^{[2]}\).
- AP increased +2.2% and AP\(_{0.5}\) increased +2.8%, without affecting the recall.
- Precision improvement is due to elimination of false positives.

Conclusions
- Fundamental matrix estimation using bounding box centroids.
- Epipolar confidence reduces false positives.
- Improved benchmark against single-view
 - AP increased +2.2% and AP\(_{0.5}\) increased +2.8%
 - Recall was unaffected
