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Neural Vs. Kernel

® Neural Network B Support Vector Machine

Hidden

AA Class 2
A

. Linear Kemel RBF Kemnel

— over-fitting — kernel choice
— complexity Vs. traceability — training complexity
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Well-suited to classical problems ....

O /LD Y
o ||| 7|2 |

[Bishop 2006]
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Common ML Sensing Tasks ...

® Object Classification
what object ?

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

H Object Detection ‘.
- {people | vehicle | ... intruder ....}
object or no-object ? ﬁ o

¥ Instance Recognition ?
who (or what) is it ?
P .;' -

® Sub-category analysis mmﬁi e
which object type ? ‘ - A b -\

{gender | type | species | age ......}

{face | vehicle plate| gait .... — biometrics}

B Sequence { Recognition | Classification } 7 Bl e
what is happening / occurring ? R
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B ... In the big picture /” person

building

tank

Machine
Learning

cattle

“Decision
or
Prediction”

car

Features representation
and/or raw sensor samples ....
]
]

plane

o

\ etc.
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A simple learning example ....

W Learn prediction of “Safe conditions to fly ?”
— based on the weather conditions = attributes
— classification problem, class = {yes, no}

Attri bUtes l Features ----------------------------------------------------------------------- Classification
::j:‘“C")“u“tIook Temperature Humidity Wma;/ Fly
ity 85 T T— Fatss™ Rl
Sunny 80 90 True No
Overcast 83 86 False Yes
Rainy 75 80 False Yes

Toby Breckon DSTL - 9/10/13 : 10
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Decision Tree Recap

B Set of Specific Examples ...

NIVERSITY

Crcmﬁeld

Safe conditions to fly ?

Outlook

Sunny Overcast

—

LEARNING Fe

(training data)

Day Outlook Temperature Humidity Wind \ Fly ‘
D1  Sunny Hot High  Weak No |
D2 Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High  Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Stron

D12 Overcast Mild High  Strong

D13 Overcast Hot Normal Weak

D14  Rain Mild High  Strong No

/

High Normal
No Yes

Rain

B

Wind
Strong Weak
No Yes

GENERALIZED RULE

Toby Breckon
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Growing Decision Trees

B Construction is carried out top down based on node
splits that maximise the reduction in the entropy in each
resulting sub-branch of the tree

[Quinlan, '86] r e
' — |

m Key Algorithmic Steps e 5
1. Calculate the information gain of splitting on each attribute
(i.e. reduction in entropy (variance))
2. Select attribute with maximum information gain to be a new node
3. Split the training data based on this attribute

Sunny Overcast Rai Sunny Overcast
|
Humidity i Yes

lllllllllllll

4. Repeat recursively (step 1 — 3) for each sub-node until all

Toby Breckon DSTL - 9/10/13 : 12



Create a discrete attribute to test continuous attributes
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Extension : Continuous Valued Attributes

— chosen threshold that gives greatest information gain

L'emperature = 82.5

(Temperature > 72.3) =t, f

Temperature
Fly

40 48 60 72 &80 90
No No Yes Yes Yes No

Toby Breckon

NIVERSITY
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® Consider adding noisy training example #15:

Problem of Overfitting

Crcmﬁeld

NIVERSITY

— [ Sunny, Hot, Normal, Strong, Fly=Yes ] (WRONG LABEL)

® What training effect would it have on earlier tree?

Sunny

e

Humidity

/\

High Normal

/ \

No Yes

Outlook

Overcast

Yes

Rain

~

Wind

/\

Strong Weak

/ %

No Yes

Toby Breckon
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Problem of Overfitting

® Consider adding noisy training example #15:

— [ Sunny, Hot, Norm|y=Yes]

— = wind!
® What effect on earlier decision tree?
— error in example = error in tree construction !

NIVERSITY

Toby Breckon
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Overfitting in general

® Performance on the training data (with noise) improves
B Performance on the unseen test data decreases

0.9

0.85 | e

08 b —

075 b e .
o7 b/

0.65 K

Accuracy
1-.\_\_‘_\_'_
1
1
1
1
1

0.6 F On training data ——
On test data ----

0.55 F

'D. 5 1 [ | 1 1 1 1 1 [ | 1
0 10 20 30 40 S0 60 70 a0 a0 L0
Size of tree (number of nodes)

— For decision trees: tree complexity increases, learns training
data too well! (over-fits)

Toby Breckon DSTL - 9/10/13 : 16
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Overfitting in general

¥ Hypothesis is too specific towards training examples
® Hypothesis not general enough for test data

0.9

0.85 | ——

0s | —

075 | o .
o7 b/

0.65 |

Accuracy
H.\_\_‘_\_r
1
1
1
1
1
1
1
1
1
1
1

0.6 F O training data —
On test data ----

0.55

Increasing model complexity

eld

NIVERSITY
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Graphical Example: function approximation (via regression)

Degree of Polynomial Model

—— Function f()

— Learning Model

(approximation of f())

o Training Samples

(from function)

0 . 1

Source: [PRML, Bishop, 2006]

Toby Breckon DSTL - 9/10/13 : 18



Increased Complexity

—— Function f()

— Learning Model

(approximation of f())

o Training Samples

(from function)

0

Source: [PRML, Bishop, 2006]

X

1

Toby Breckon
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Increased Complexity
Good Approximation

—— Function f()

— Learning Model

(approximation of f())

o Training Samples

(from function)

0 - 1

Source: [PRML, Bishop, 2006]
Toby Breckon DSTL - 9/10/13 : 20




Over-fitting!
{ Poor approximation
O
> O
Or l
—— Function f() O

— Learning Model
(approximation of f()) O

Training Samples

(from function)

0 1

Source: [PRML, Bishop, 2006] x
Toby Breckon DSTL - 9/10/13 : 21
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Avoiding Over-fitting

® g» ©®

¥ Robust Testing & Evaluation

— strictly separate training and test sets
« train iteratively, test for over-fitting divergence

=
\%\\é

— advanced training / testing strategies (K-fold cross validation) =

S
>
=
=

=

\

W For Decision Tree Case:

— control complexity of tree (e.g. depth)
 stop growing when data split not statistically significant
» grow full tree, then post-prune

— minimize { size(tree) + size(misclassifications(tree) }
* j.e. simplest tree that does the job! (Occam)

Toby Breckon DSTL - 9/10/13 : 22
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A stitch In time ...

Decision Tress
[Quinlan, '86]
and many others..

JUL 03 1985 :05:48

LAST TIME DEPARITED

JACK TO THE FUTURE

Ensemble
Classifiers

Toby Breckon DSTL - 9/10/13 : 23
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Fact 1: Decision Trees are Simple

Fact 2: Performance on complex sensor interpretation
problems is Poor

... unless we combine them in an Ensemble Classifier

Toby Breckon DSTL - 9/10/13 : 24
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Extending to Multi-Tree Ensemble Classifiers
WEAK

m Key Concept: combining multiple classifiers

— strong classifier: output strongly correlated to correct classification

— weak classifier: output weakly correlated to correct classification
» I.e. it makes a lot of miss-classifications (e.g. tree with limited depth)

® How to combine:
— Bagging:

« train N classifiers on random sub-sets of training set; classify using majority vote of
all N (and for regression use average of N predictions)

— Boosting:

« Use whole training set, but introduce weights for each classifier based on
performance over the training set

® Two examples: Boosted Trees + (Random) Decision Forests

— N.B. Can be used with any classifiers (not just decision trees!)

Toby Breckon DSTL - 9/10/13 : 25
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Extending to Multi-Tree Classifiers

W To bag or to boost .....

Sunny Overcast Rain
Outlook ’
Sunny Overcast Rain
| High Normal Strong Weak
QOutlook Yes Wind
No Yes No Yes
\ -()lzr/(mk
Sunny  Overcast I High Normal Strong Weak

Sunny Overcast Rain

Yes No Yes No Yes
' QOutlook

High Normal Strong Weak

Sunny Overcast Rain
High Normal Strong Weak
No Yes No Yes T N
-HIHHI(II)"\' Yes Wind
No Yes No Yes
Sunny Overcast i High Normal Strong Weak

Y|e " No \Ym No/ \Yc s

High Normal Strong Weak

\ : :
" ... thatis the question.

Toby Breckon DSTL - 9/10/13 : 26
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Learning using Boosting

Learning Boosted Classifier (Adaboost Algorithm)

Assign equal weight to each training instance
For t iterations:
Apply learning algorithm to weighted training set,
store resulting (weak) classifier
Compute classifier’s error e on weighted training set
If e = 0 or e > 0.5:
Terminate classifier generation
For each instance in training set:
If classified correctly by classifier:
Multiply instance’s weight by e/ (1-¢e)
Normalize weight of all instances

e = error of classifier on the training set
Classification using Boosted Classifier

Assign weight = 0 to all classes
For each of the t (or less) classifiers:
For the class this classifier predicts
add -log e/ (l-e) to this class’s weight
Return class with highest weight

Toby Breckon DSTL —9/10/13 : 27
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Learning using Boosting

B Some things to note:

— Weight adjustment means t+7" classifier concentrates on the
examples t"” classifier got wrong

— Each classifier must be able to achieve greater than 50% success
* (i.e. 0.5 in normalised error range {0..1})
— Results in an ensemble of t classifiers
* i.e. a boosted classifier made up of t weak classifiers
» boosting/bagging classifiers often called ensemble classifiers
— Training error decreases exponentially (theoretically)
» prone to over-fitting (need diversity in test set)
— several additions/modifications to handle this

— Works best with weak classifiers

W Boosted Trees
— set of t decision trees of limited complexity (e.g. depth)

Toby Breckon DSTL - 9/10/13 : 28
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Extending to Multi-Tree Classifiers

® Bagging = all equal (simplest approach)
B Boosting = classifiers weighted by performance

— poor performers removed (zero or very low) weight
— t+1" classifier concentrates on the examples t” classifier got

To bag or boost ? - boosting generally works very well
(but what about over-fitting ?)

Toby Breckon DSTL - 9/10/13 : 29
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D e C i S i O n F O reStS (a.k.a. Random Forests/Trees)

B Bagging using multiple decision trees where each tree in
the ensemble classifier ...

— is trained on a random subsets of the training data

— computes a node split on a random subset of the attributes
[Breiman 2001]

— close to “state of the art” for 1), . |
ObjeCt Seg mentation / classification (inputs : feature vector descriptors) [Bosch 2007]

Toby Breckon DSTL - 9/10/13 : 30
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D e C i S i O n F O reStS (a.k.a. Random Forests/Trees)

Input feature vector f

/\

Tree2
2 2
2 C/Da e e @

\\

Class1 Class 2

.l
| -

Votes

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 31
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D e C i S i O n F O reStS (a.k.a. Random Forests/Trees)

¥ Decision Forest = Multi Decision Tree Ensemble
Classifier
— bagging approach used to return classification

— [alternatively weighted by number of training items assigned to the final leaf
node reached in tree that have the same class as the sample
(classification) or statistical value (regression)]

W Benefits: efficient on large data sets with multi attributes and/or
missing data, inherent variable importance calc., unbiased test error
(“out of bag”), “does not overfit”

® Drawbacks: evaluation can be slow, lots of data for good
performance, complexity of storage ...

[‘Random Forests”, Breiman 2001]
Toby Breckon DSTL - 9/10/13 : 32




UNCLASSIFIED Cranﬁeld

UNIVERSITY

D e C i S I O n F O reStS (a.k.a. Random Forests/Trees)

Right lung, large tumor,
anisotropic voxels

LoadVolume Run

AEBn

Montillo et al.. "Entangled decision forests and their application
for semantic segmentation of CT images." In Information
Processing in Medical Imaging, pp. 184-196. 2011.
http://research.microsoft.com/en-us/projects/decisionforests/

DSTL —9/10/13 : 33

Gall J. and Lempitsky V., Class-Specific Hough Forests for Object Detection,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09),

2009.

Toby Breckon
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Microsoft Kinect ....

¥ Body Pose Estimation in Real-
time From Depth Images

— uses Decision Forest Approach

Shotton et al., Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR, 2011 -
http.//research.microsoft.com/apps/pubs/default.aspx?id=145347

Toby Breckon DSTL - 9/10/13 : 34
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Why do they work so well 7

®m Optimal cut points depend strongly on the training set
used (high variance)

— hence idea of using multiple trees voting for result

B For multiple trees to be most effective the trees

should be independent
— splitting using a random feature subset supports this

B Averaging the outputs of trees reduces overfitting to

noise.
— thus pruning (complexity reduction) is not needed

Toby Breckon DSTL - 9/10/13 : 35
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Comparison - Classical Problem

Handwritten Digit Recognition

— 10 class problem
— 64 features / attributes

Dataset: [ Alpaydin / Kaynak, 98]

Technique

o

/

L

d Y

&,

7

2|4

True Class.

False Class.

[Bishop 2006]

Decision Tree
Boosted Trees

84.69%

15.3%

(depth <=25)

: Decision (Random) Forest
: Extreme Random Forest*

96.49%
96.71%

(100 trees):
(100 trees):

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Support Vector Machine (SVM)
Neural Network
Naive Bayes

96.10%
71.56%
84.81%

15.19%

(3-

(linear kernel)

layer, 10 hidden nodes)

* + random attribute split threshold

Toby Breckon

DSTL —9/10/13 : 37
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| | |
Comparison: clutter n
omparison. ciatter noise ....
Feature Vector | Accuracy | Precision | TNR | Recall
Isolated Zernike 03.65 88.52 90.14 | 98.18
[solated HSI 08.41 96.72 7.01 100
Combined 98.41 96.72 7.01 100

Table I. Performance of Support Vector Machine classifier (%)

Feature Vector | Accuracy | Precision | TNR | Recall
[solated Zernike 80.95 01.11 03.85 | 67.21
Isolated HSI 80.68 096.15 96.9 81.97
Combined O7.61 100 100 95.08

Table II. Performance of Neural Network classifier (%)

Feature Vector | Accuracy | Precision | TNR | Recall
Isolated Zernike 70.63 81.58 R89.23 50.82
Isolated HSI 08.41 100 100 096.72
Combined 08.41 100 100 06.72
Table IIl. Performance of Decision Tree classifier (%)
Feature Vector | Accuracy | Precision | TNR | Recall
I[solated Zernike 89.68 03 .86 03.85 | 85.25
Isolated HSI 98.41 100 100 96.72
Combined 05.41 100 100 096.72

Table 1V. Performance of Boosted Decision Tree classifier (%)

RN RN NN NN NN NN N NN NN RN nnnnnnng

4

E Feature Vector | Accuracy | Precision | TNR | Recall z
: Isolated Zernike 890.95 03.02 05.38 | 65.57 :
: Isolated HSI 100 100 100 100 :
: Combined 08.41 100 100D 06.72 :

Table V. Performance of Random Forest classifier (%)

A Comparison of Classification Approaches for Threat Detection in CT based Baggage
Screening (N. Megherbi, J. Han, G.T. Flitton, T.P. Breckon), In Proc. Int. Conf. on Image
Processing, pp. 3109-3112, 2012.

Toby Breckon www. cranfield.ac.uk/~toby. breckon/demos/baggagevolumes/ DSTL - 9/10/13 : 38
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What if every weak classifier was just the
presence/absence of an image feature ?

(i.e. feature present = {yes, no} )

As the number of features present from a given
object, in a given scene location, goes up the
probability of the object not being present goes
down!

This is the concept of feature cascades.

Toby Breckon DSTL - 9/10/13 : 39
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Feature Cascading .....

Use boosting to order image features from most to least
discriminative for a given object ....

— allow high false positive per feature (i.e. it's a weak classifier!)

— select features via boosting

As feature F_to F  of an object is present — probability of non-

occurrence within the image tends to zero
PASS
N-features

e.g. Extended Haar features FAIL ’@ oSS

— set of differences between image regions

— rapid evaluation (and non-occurrence) reiection FAIL '@

PASS
[Volia / Jones 2004] [. : 0 O

A FAIL OBJECT
pmEE $$Se [P

Toby Breckon DSTL - 9/10/13 : 40
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PASS
N-features
FAIL
PASS
FAIL
PASS

Toby Breckon DSTL - 9/10/13 : 41
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Haar Feature Cascades|

m Real-time Generalised Object
Recognition

B Benefits
— Multi-scale evaluation
» scale invariant
— Fast, real-time detection
— “Direct” on image
» no feature extraction

— Haar features
» contrast/ colour invariant

® Limitations

— poor performance on non-rigid
objects

— object rotation i PN
[Breckon / Eichner / Barnes / Han / Gaszczak 08-09]

Toby Breckon DSTL - 9/10/13 : 42
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Ferns ...

fo fo
1 /2 - S
fa) (Jfa) (fs) (e fa) (fa) {2

Cranﬁ

eld

NIVERSITY

Concept: “a constrained tree where a simple binary test is

performed at each level”

e.g relative intensities of a pair of pixels:
fi(1) = 1(Xa,ya) > [(xb,yb) -> true

fo(l) = I(xc,yc) > l(xd,yq) -> false

Images: David Capel, Penn. State.

Toby Breckon

DSTL
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Ferns = “Semi-Naive” Bayes

m Class C, & feature set {f}

® Posterior probability :  argmax P(Ck|f1, fo,..., [N)
k

¥ Via Bayes rule :
argmax P(flg Fixs. 3 fN‘Ck)P(C;{) (likelihood x prior)
k

¥ Naive Bayes

N
P(f1, f2y s fNICx) = | | P(fsCk)
V=i |

— assume features are independent

— often invalid assumption
Toby Breckon DSTL - 9/10/13 : 47
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Ferns = “Semi-Naive” Bayes

m Group features into sets, F,, of size S

By = Qi s Ji0ssws J18 T

B Assume groups are conditional independent
L
P Fa J2s 0 d 0l O) = HP(F;!\QJ
=1

W Perform classification via “Semi-Naive” Bayes approach

L
Class(f) = argmax P(C}) H P(F;|Cy)
& =1

Toby Breckon DSTL - 9/10/13 : 48
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Ferns ...

Result = S-digit binary code for a given set of S tests

jg _, [ofofift] _, 11
> 2" binary code decimal

... to be interpreted as an decimal value 0 — 2°

Essentially a “*hash” (lookup) of S-digit binary
value to 0 — 2°

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 49
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Ferns ...

Apply to a large number of (training) examples to learn a
multinomial distribution of this “hash” value 0 — 2°

p(F|C) T
1 e | | |

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 50




UNCLASSIFIED Cr anﬁgégﬂw
Ferns ....

Repeat for all classes ....

S E B p(F|Co)
3 H B |;||:||:I|:||:||:||:||;| P(FIC)
4 =)

s ael e 0g Peics
o6 66 o, 7

.

El |3 3 .
HHHBH g oo

... obtain one distribution per class

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 51
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Fern Based Classification

For an unseen example, I:

— construct fern

— perform lookup via decimal “hash”

— compute posterior probablllty for class

Test input | 0 |

Bl ] e
Apply f I:I |:||:| (F|C2) | ]
pply tern p 2 Normalize —
F(|}=[00011] I:II:I :I:I'Ij ? distribution C] C_:g Ca CBZ
=3 i : Class posterior
,
N p(F|Ck)
Cr|F
DI:IDDI:IDEID P(FIC P(ChIF) = 2k P(F|CY)

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 52
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Random Ferns

Construct L ferns from random feature subsets

S NS S (S(S|S|S
B S|S|S[S|S
) o )
F3 = {fe, f31, fag, f11, T2}
25(S(SI5|S
Classify using whole set

Compute most probable class, C, as:

L
Class(f) = argmax P(Cy) H P(F;|C%)
k

[=1

Images: David Capel, Penn. State.

NIVERSITY

Toby Breckon
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Random Ferns
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Classification now only involves “fast lookup™:

Fern 1

Fern L

L ] n El i:l
: Posterior over
e 4 § chlee, class label
2
p o > -
B B_gu [ LI 2R o I
6 0 2

Images: David Capel, Penn. State.

Toby Breckon
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Comparison ...

W fast key-point matching
— each point is a class

— trained on 1000s affine
transforms of same patch

— fast, robust

- S=10
— ensembles of 5-50 ferns

Ozuysal, Mustafa, et al. "Fast keypoint recognition using random ferns." Pattern
Analysis and Machine Intelligence, IEEE Transactions on 32.3 (2010): 448-461.

Toby Breckon DSTL - 9/10/13 : 56
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Comparison ...

1':“:' T T T I T T T , :
= ———ﬂ:___-[_ __},— el
T T i
Ell:l i //’_,./-’4' !
= e |
~ 70 - e 3 y
g 80r / B |
: e
= 50| _
ﬁ —‘-__.i
5 P
& 40 |
3':' [ Il-._r" J
20 | _
¥
Ferms ——
Random Trees ---s---
10 ]
- : : : 1 l L ! 1 |
0 5 10 15 20 25 30 35 40 e 20

# of Structures (Depth/Size 10)

Images: David Capel, Penn. State.
Toby Breckon DSTL - 9/10/13 : 57




Average Classification Rate

30 ferns with S =10

Images: David Capel, Penn.

100

g0

70

60

50

40

20

10

UNCLASSIFIED Cr Clnfél\eml,gsny
Comparison ...

T I T I T T [ T
1_11*
Fg
E x _f__I-E'E- ]
l"\. i-f_i-—E
' TFEEFFz g 3
= TEEEFETIFss e . L
X
x ?‘\?h
| -?‘“?,_-. .
r T A
: E'?_E s
i ﬁ'ﬁ'%%ﬁ-g.:- _ i
= ¥ E-EFE 533
Ferns (30 ferns with size 10) +——
¥ Random Trees (30 trees with depth 10} «--x
1 | 1 | 1 1 | 1
i 250 500 7h0 1000 1260 1500 1750 2000
# of Classes
State.

Toby Breckon
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Comparison ...

® Random Forests
— decision trees directly learn the posterior P(C,|F)

— different sequence of tests in each child node
— training time grows exponentially with tree depth
— combine tree hypotheses by averaging

W Ferns
— learn class-conditional distributions P(F|C,)

— same sequence of tests to every input vector
— training time grows linearly with fern size S
— combine hypothesis using Bayes rule (multiplication)

Images: David Capel, Penn. State.
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Comparison ...

W Fern classifiers can be very memory hungry, e.g.
— Fern size = 11
— Number of ferns = 50
— Number of classes = 1000

RAM = 25 * sizeof(float) * NumFerns * NumClasses
= 2048 * 4 * 50 * 1000
= 400 Mbytes!

Example: David Capel, Penn.
State.

m ... BUT so can Random Forests
BUT both easy to parallelize
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No Free Lunch! (Theorem)

W ....the idea that it is impossible to get something for
nothing

W This is very true in Machine Learning

— approaches that train quickly or require little memory or few
training examples produce poor results

 and vice versa .... 1

— poor data = poor learning £
- problems with data = problems with learning & 3 ™~

« problems = {not enough data, poorly labelled, biased,
unrepresentative ... }
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What we have seen ...

¥ The power of combining simple things ....
— Ensemble Classifiers

- 30
— concept extends to all ML approaches

¥ Decision Forests
— Decision Trees back from the grave (or the '80s)

W Ferns

— simplified trees, fast, powerful -

— beginning of the story
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Further Reading - textbooks

® Machine Learning (P. Flach),
Cambridge University Press, 2012.

® Pattern Recognition & Machine
Learning - Christopher Bishop
(Springer, 2006)
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Further Reading - textbooks

®m Bayesian Reasoning and
Machine Learning

— David Barber

http://www.cs.ucl.ac.uk/staff/d.barber/brml/
(Cambs. Univ. Press, 2012)

® Computer Vision: Models,

Learning, and Inference

— Simon Prince
(Springer, 2012)
http://www.computervisionmodels.com/

. BAYESIAN
REASONING

and algorithr

MACHINE |
LEARNING

David Barber

.. both very probability driven, both available

as free PDF online

SIMON J. D. PRINCE

COMPUTER
VISION

MODELS, LEARNING,
AND INFERENCE
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Thanks ...

www.cranfield.ac.uk/~toby.breckon/mlitutorial/
toby.breckon@cranfield.ac.uk
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www.breckon.eu/toby/mitutorial/
toby@breckon.eu
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