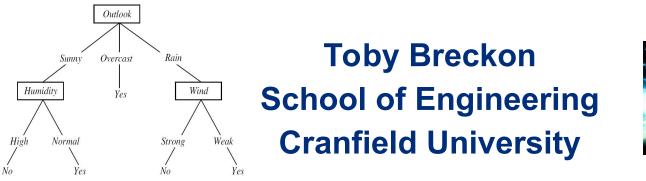


Back to the future: Classification Trees Revisited (Forests, Ferns and Cascades)



www.cranfield.ac.uk/~toby.breckon/mltutorial/

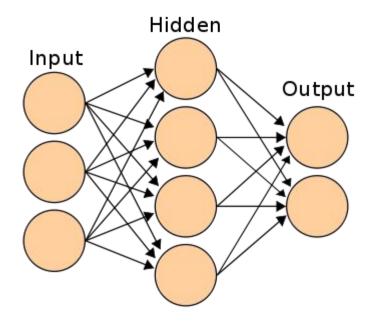
toby.breckon@cranfield.ac.uk

9th October 2013 - NATO SET-163 / RTG-90

Defence Science Technology Laboratory, Porton Down, UK

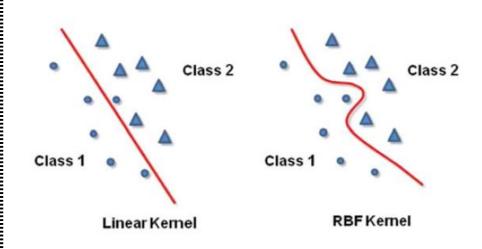
Neural Vs. Kernel

Neural Network



- over-fitting
- complexity Vs. traceability

Support Vector Machine

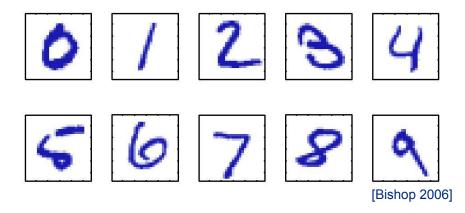


- kernel choice
- training complexity

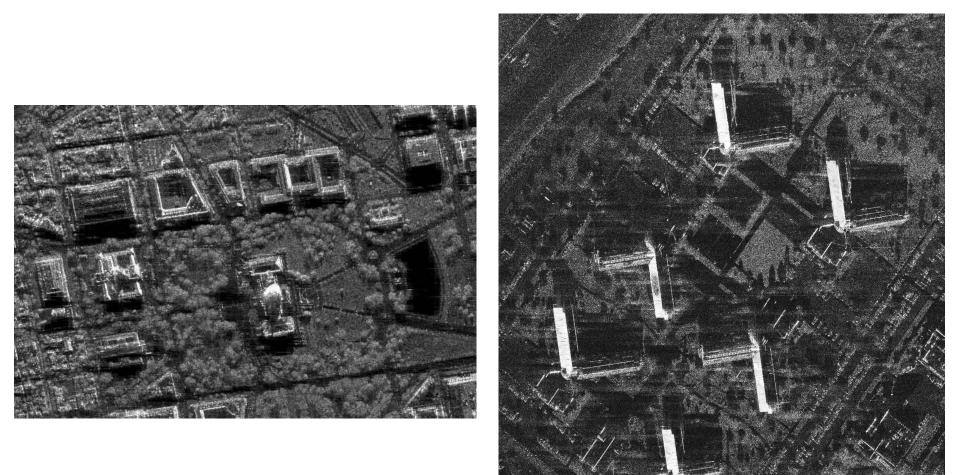
-Cranfield

Well-suited to classical problems

[Fisher/Brekcon et al. 2013]



Cranfield



Cranfield

Common ML Sensing Tasks ..

Object Classification what object ?

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Object Detection object or no-object ?

{people | vehicle | ... intruder}

Instance Recognition ? who (or what) is it ?

{face | vehicle plate| gait $\dots \rightarrow$ biometrics}

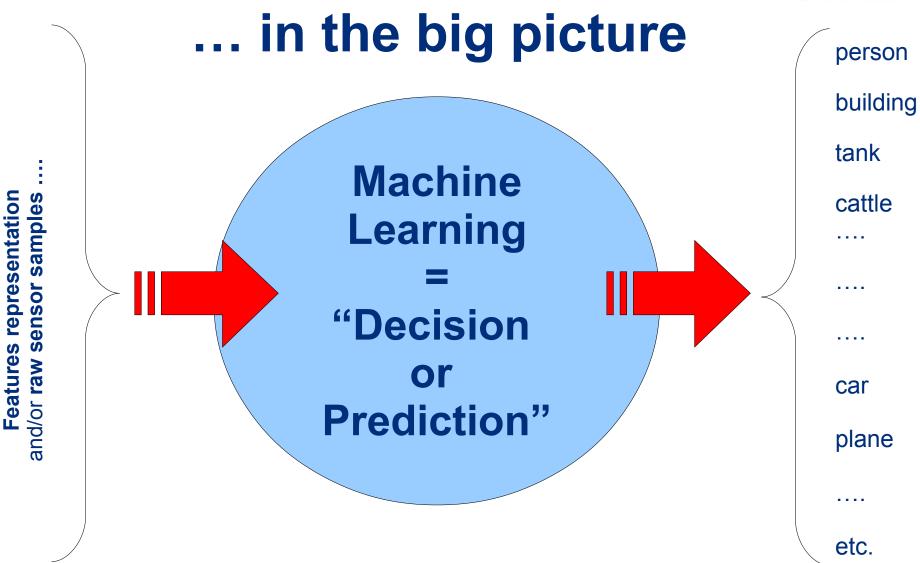
Sub-category analysis which object type ?

{gender | type | species | age}

Sequence { Recognition | Classification } ?

what is happening / occurring ?

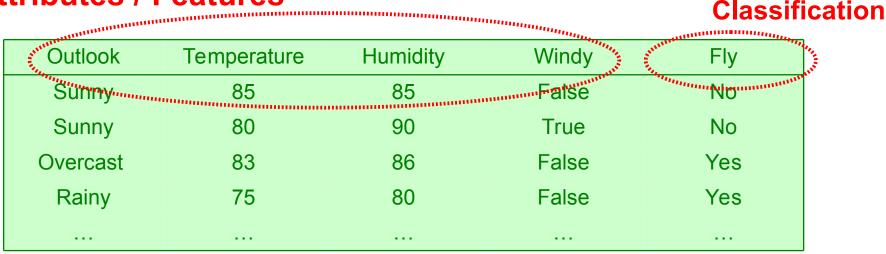
Cranfield UNIVERSITY



A simple learning example

- Learn prediction of "Safe conditions to fly ?"
 - based on the weather conditions = attributes
 - classification problem, class = {yes, no}

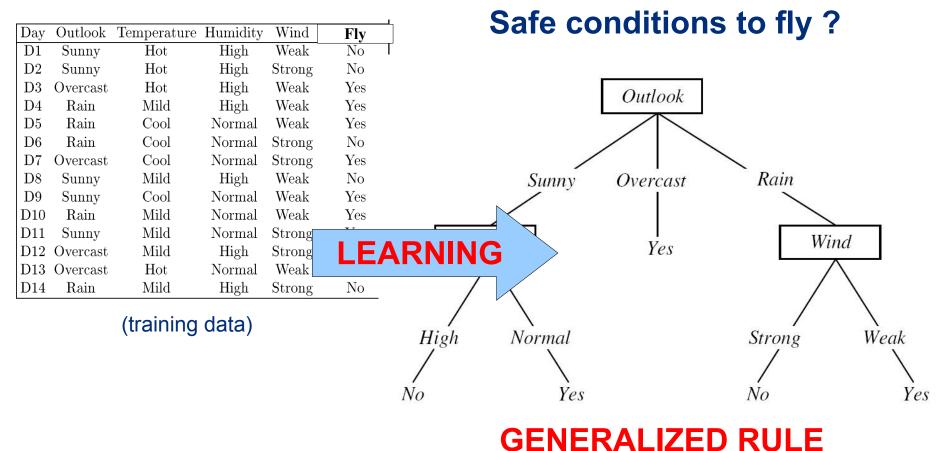
Attributes / Features



Cranfield

Cranfield

Set of Specific Examples ...



DSTL - 9/10/13 : 11

Growing Decision Trees

Construction is carried out top down based on node splits that maximise the reduction in the entropy in each resulting sub-branch of the tree

[Quinlan, '86]

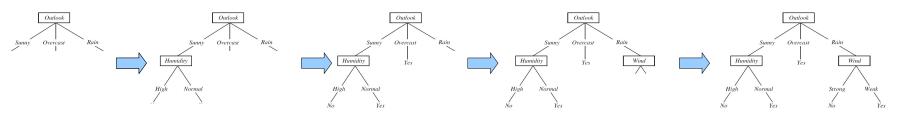
Key Algorithmic Steps

Cran

1. Calculate the information gain of splitting on each attribute

(i.e. reduction in entropy (variance))

- 2. Select attribute with maximum information gain to be a new node
- 3. Split the training data based on this attribute



4. Repeat recursively (step $1 \rightarrow 3$) for each sub-node until all

Extension : Continuous Valued Attributes

Create a discrete attribute to test continuous attributes

- chosen threshold that gives greatest information gain

Temperature = 82.5

(Temperature > 72.3) = t, f

Temperature	40	48	60	72	80	90
Fly	No	No	Yes	Yes	Yes	No

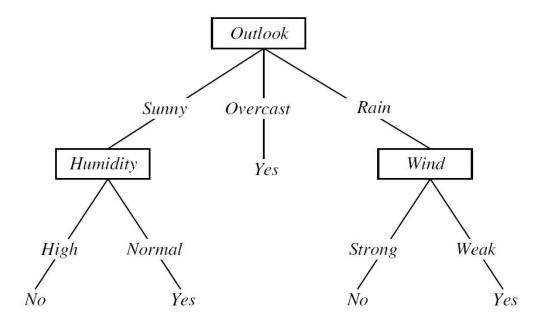
Cranfield

Problem of **Overfitting**

Cranfield

Consider adding **noisy** training example #15:

- [Sunny, Hot, Normal, Strong, Fly=Yes] (WRONG LABEL)
- What training effect would it have on earlier tree?

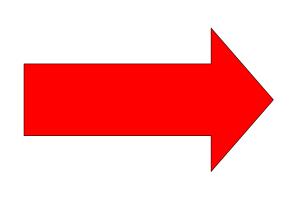


Problem of **Overfitting**

Consider adding noisy training example #15:
 – [Sunny, Hot, Norma, Strong, Fly=Yes]
 – = wind!

What effect on earlier decision tree?

– error in example = error in tree construction !



Cranfield

Overfitting in general

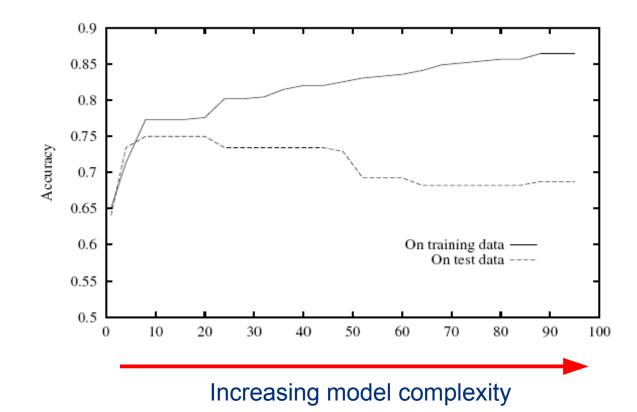
Performance on the training data (with noise) improves
 Performance on the unseen test data decreases

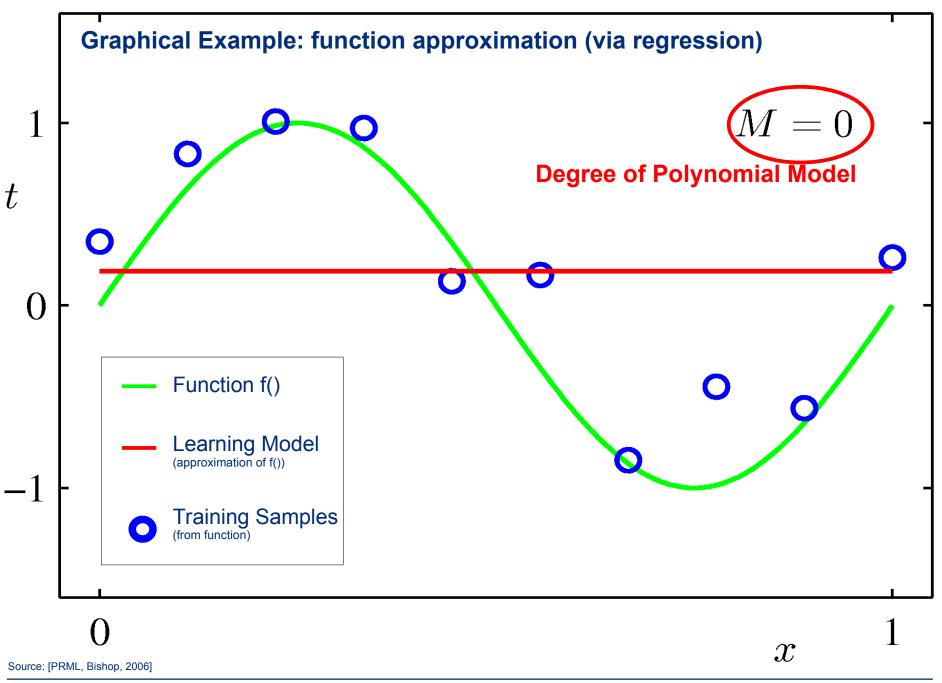


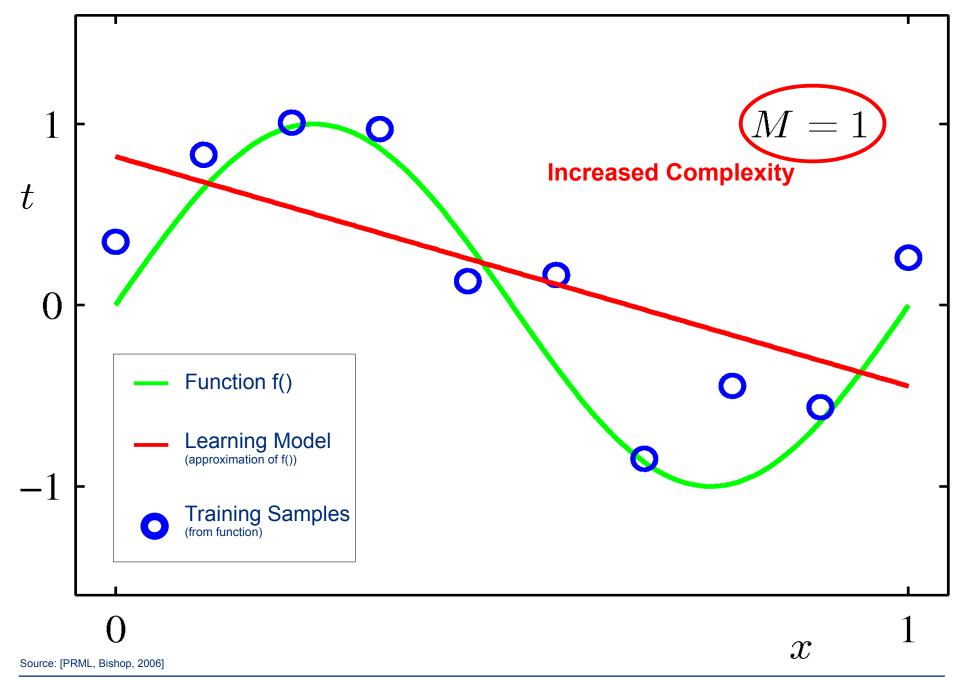
For decision trees: tree complexity increases, learns training data too well! (over-fits)

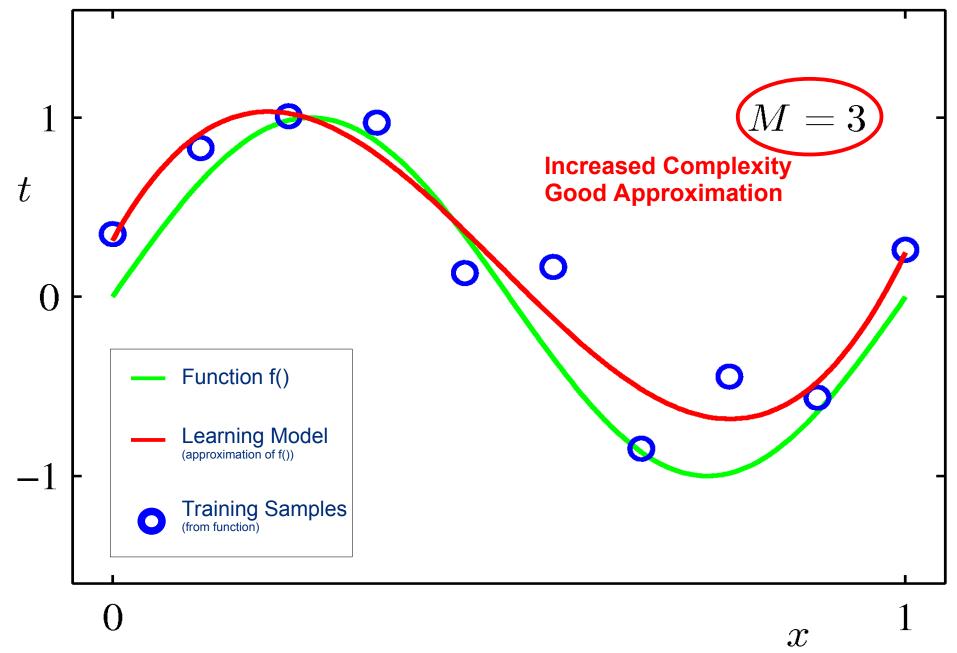
Overfitting in general

Hypothesis is too specific towards training examples
 Hypothesis not general enough for test data

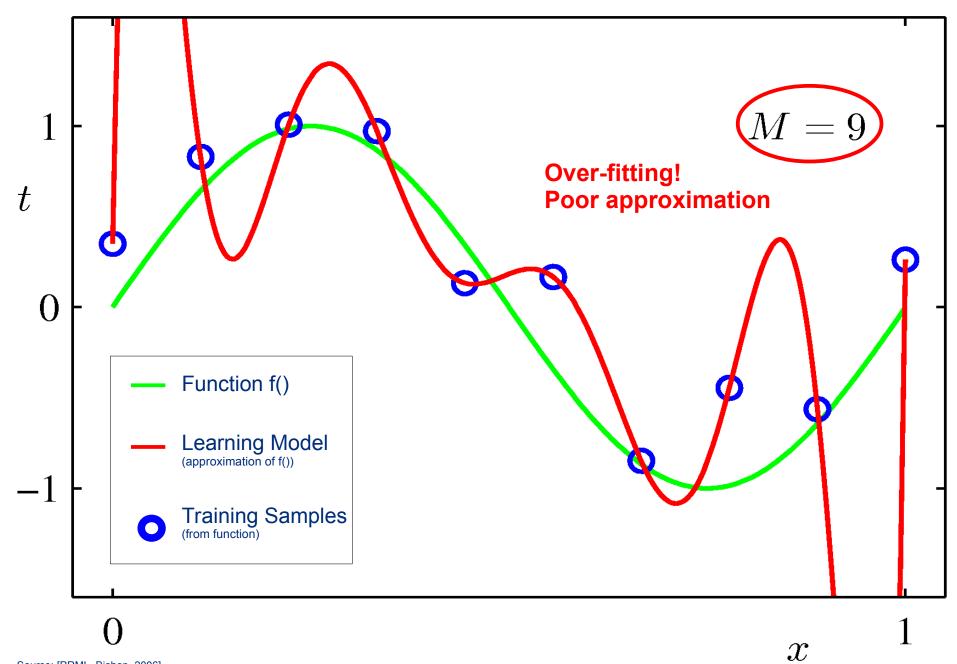








Source: [PRML, Bishop, 2006]



Source: [PRML, Bishop, 2006]

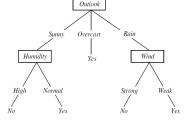
Avoiding Over-fitting

Robust Testing & Evaluation

- strictly separate training and test sets
 - train iteratively, test for over-fitting divergence
- advanced training / testing strategies (K-fold cross validation)

For Decision Tree Case:

- control complexity of tree (e.g. depth)
 - stop growing when data split not statistically significant
 - grow full tree, then post-prune
- minimize { size(tree) + size(misclassifications(tree) }
 - *i.e.* simplest tree that does the job! (Occam)



Cran

A stitch in time ...

Decision Tress

[Quinlan, '86] and many others..

Ensemble Classifiers

Cranfield

Fact 1: Decision Trees are Simple

Fact 2: Performance on complex sensor interpretation problems is **Poor**

... unless we combine them in an **Ensemble Classifier**

Extending to Multi-Tree Ensemble Classifiers

Key Concept: combining multiple classifiers

- strong classifier: output strongly correlated to correct classification
- weak classifier: output weakly correlated to correct classification
 - » i.e. it makes a lot of miss-classifications (e.g. tree with limited depth)

How to combine:

- Bagging:
 - train N classifiers on random sub-sets of training set; classify using majority vote of all N (and for regression use average of N predictions)

- Boosting:

• Use whole training set, but **introduce weights** for each classifier **based on performance** over the training set

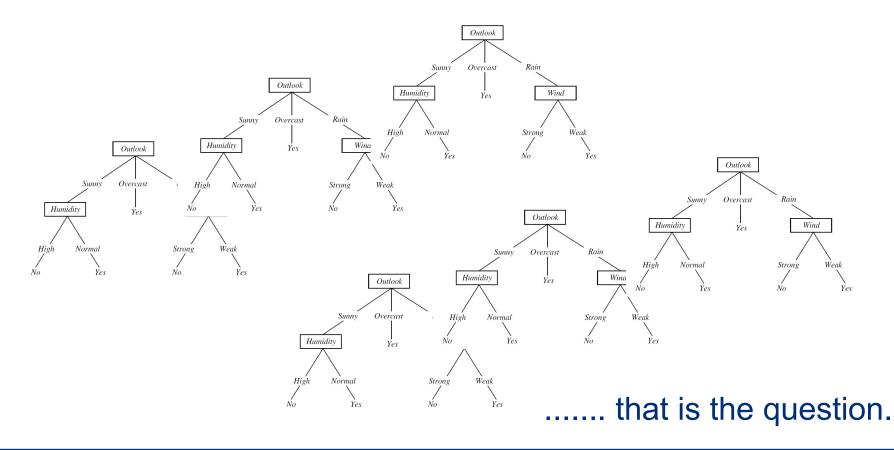
Two examples: Boosted Trees + (Random) Decision Forests

- N.B. Can be used with any classifiers (not just decision trees!)

Cranfield

Extending to Multi-Tree Classifiers

To bag or to boost



Learning using Boosting

Learning Boosted Classifier (Adaboost Algorithm)

```
Assign equal weight to each training instance
For t iterations:
Apply learning algorithm to weighted training set,
   store resulting (weak) classifier
Compute classifier's error e on weighted training set
If e = 0 or e > 0.5:
   Terminate classifier generation
For each instance in training set:
   If classified correctly by classifier:
     Multiply instance's weight by e/(1-e)
Normalize weight of all instances
```

e = error of classifier on the training set

Classification using Boosted Classifier

```
Assign weight = 0 to all classes
For each of the t (or less) classifiers:
    For the class this classifier predicts
        add -log e/(1-e) to this class's weight
Return class with highest weight
```

Cran

Learning using Boosting

Some things to note:

- Weight adjustment means t+1th classifier concentrates on the examples tth classifier got wrong
- Each classifier must be able to achieve greater than 50% success
 - (i.e. 0.5 in normalised error range {0..1})
- Results in an ensemble of t classifiers
 - i.e. a boosted classifier made up of t weak classifiers
 - boosting/bagging classifiers often called ensemble classifiers
- Training error decreases exponentially (theoretically)
 - prone to over-fitting (need diversity in test set)
 - several additions/modifications to handle this
- Works best with weak classifiers

Boosted Trees

- set of *t decision trees* of limited complexity (e.g. depth)

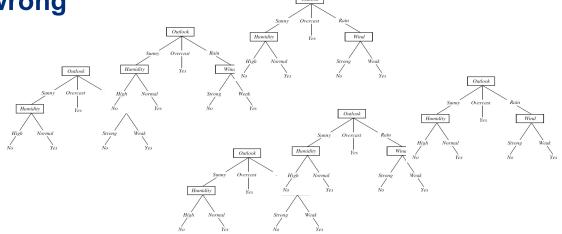
Cran

Extending to Multi-Tree Classifiers

Bagging = all equal

(simplest approach)

- Boosting = classifiers weighted by performance
 - poor performers removed (zero or very low) weight
 - t+1th classifier concentrates on the examples tth classifier got wrong



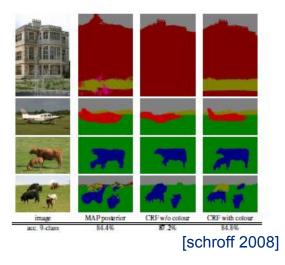
To bag or boost ? - boosting generally works very well (but what about over-fitting ?)

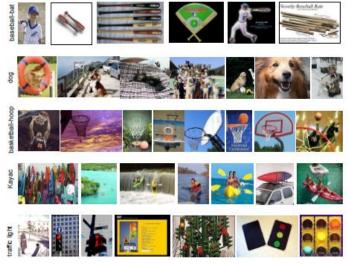
Decision Forests (a.k.a. Random Forests/Trees)

Bagging using multiple decision trees where each tree in the ensemble classifier ...

- is trained on a random subsets of the training data
- computes a node split on a **random subset of the attributes**

[Breiman 2001]



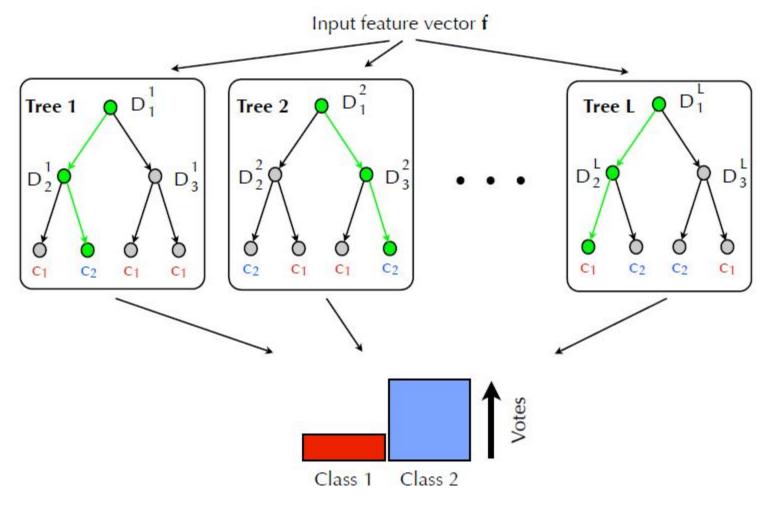


- close to "state of the art" for

object segmentation / classification (inputs : feature vector descriptors)

[Bosch 2007]

Decision Forests (a.k.a. Random Forests/Trees)

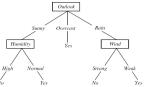


Images: David Capel, Penn. State.

Decision Forests (a.k.a. Random Forests/Trees)

Decision Forest = Multi Decision Tree Ensemble Classifier

- bagging approach used to return classification



 [alternatively weighted by number of training items assigned to the final leaf node reached in tree that have the same class as the sample (classification) or statistical value (regression)]

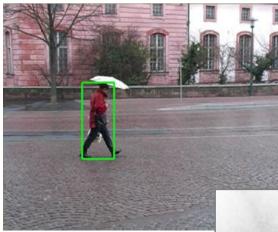
Benefits: efficient on large data sets with multi attributes and/or missing data, inherent variable importance calc., unbiased test error ("out of bag"), "does not overfit"

Drawbacks: evaluation can be slow, lots of data for good performance, complexity of storage ...

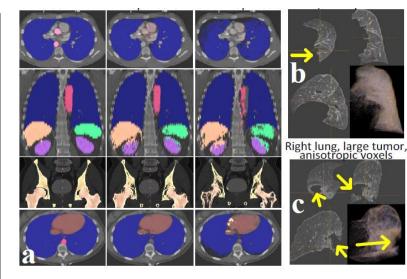
["Random Forests", Breiman 2001]

Cranfield

Decision Forests (a.k.a. Random Forests/Trees)



Gall J. and Lempitsky V., Class-Specific Hough Forests for Object **Detection**, IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09), 2009.

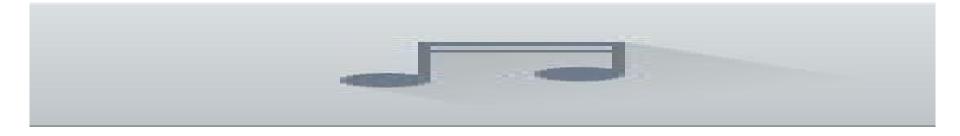


Montillo et al.. "Entangled decision forests and their application for semantic **segmentation** of CT images." In Information Processing in Medical Imaging, pp. 184-196. 2011. http://research.microsoft.com/en-us/projects/decisionforests/

Microsoft Kinect

Body Pose Estimation in Realtime From Depth Images

- uses Decision Forest Approach



Shotton et al., Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR, 2011 http://research.microsoft.com/apps/pubs/default.aspx?id=145347

Why do they work so well?

Optimal cut points depend strongly on the training set used (high variance)

- hence idea of using multiple trees voting for result

For multiple trees to be most effective the trees should be independent

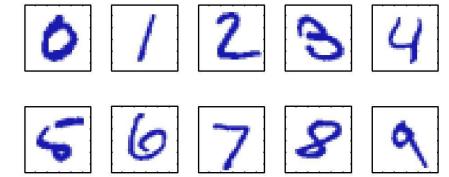
- **splitting** using a random feature subset supports this
- Averaging the outputs of trees reduces overfitting to noise.
 - thus pruning (complexity reduction) is not needed

Cranfield

Comparison - Classical Problem

Handwritten Digit Recognition

- 10 class problem
- 64 features / attributes
 Dataset: [Alpaydin / Kaynak, 98]



[Bishop 2006]

Technique	True Class.	False Class	
Decision Tree	84.69%	15.3%	(depth <=25)
Boosted Trees	82.03%	17.97%	(100 trees)
Decision (Random) Forest	96.49%	3.5%	(100 trees)
Extreme Random Forest*	96.71%	3.28%	(100 trees)
Support Vector Machine (SVM)	96.10%	3.89%	(linear kernel)
Neural Network	71.56%	28.43%	(3-layer, 10 hidden nodes)
Naive Bayes	84.81%	15.19%	*
			* + random attribute split thres

Cranfield UNIVERSITY Comparison: clutter noise

Feature Vector	Accuracy	Precision	TNR	Recall
Isolated Zernike	93.65	88.52	90.14	98.18
Isolated HSI	98.41	96.72	97.01	100
Combined	98.41	96.72	97.01	100

Table I. Performance of Support Vector Machine classifier (%)

Feature Vector	Accuracy	Precision	TNR	Recall
Isolated Zernike	80.95	91.11	93.85	67.21
Isolated HSI	89.68	96.15	96.9	81.97
Combined	97.61	100	100	95.08

Table II. Performance of Neural Network classifier (%)

Feature Vector	Accuracy	Precision	TNR	Recall
Isolated Zernike	70.63	81.58	89.23	50.82
Isolated HSI	98.41	100	100	96.72
Combined	98.41	100	100	96.72

Table III. Performance of Decision Tree classifier (%)

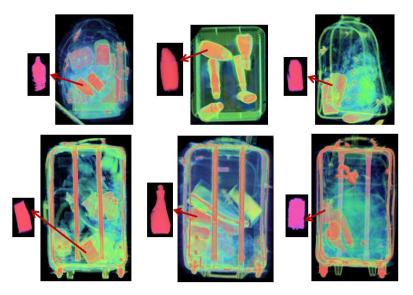
Feature Vector	Accuracy	Precision	TNR	Recall
Isolated Zernike	89.68	92.86	93.85	85.25
Isolated HSI	98.41	100	100	96.72
Combined	98.41	100	100	96.72

Table IV. Performance of Boosted Decision Tree classifier (%)

Feature Vector	Accuracy	Precision	TNR	Recall
solated Zernike	89.95	93.02	95.38	65.57
Isolated HSI	100	100	100	100
Combined	98.41	100	100	96.72

Table V. Performance of Random Forest classifier (%)

A Comparison of Classification Approaches for Threat Detection in CT based Baggage Screening (N. Megherbi, J. Han, G.T. Flitton, T.P. Breckon), In Proc. Int. Conf. on Image Processing, pp. 3109-3112, 2012.



What if every weak classifier was just the presence/absence of an image feature ? (i.e. feature present = {yes, no})

As the number of features present from a given object, in a given scene location, goes up the probability of the object not being present goes down!

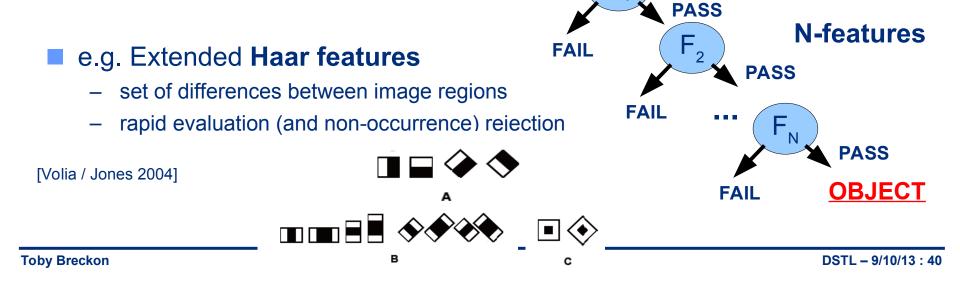
This is the concept of feature cascades.

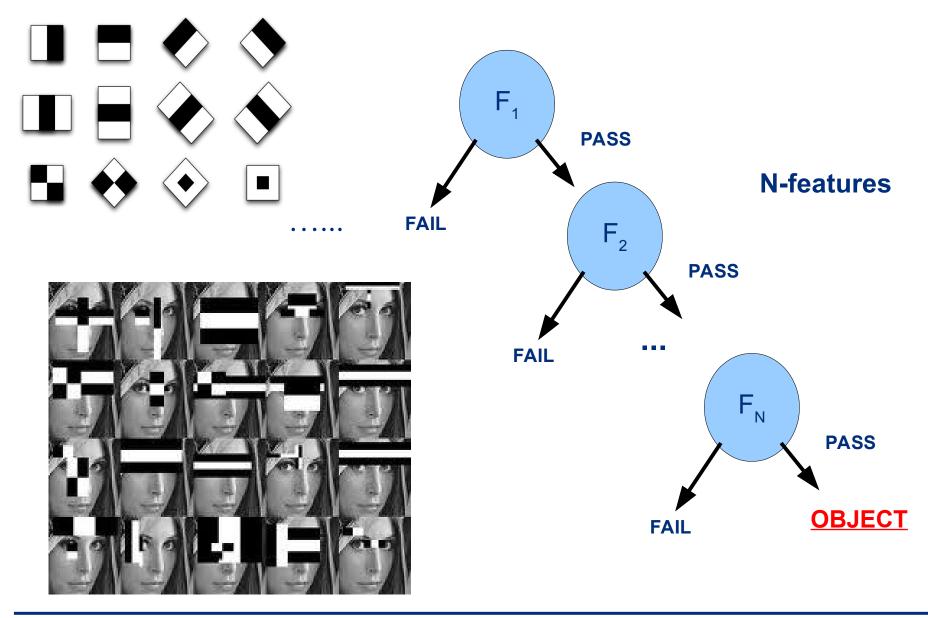
Cran

Feature Cascading

Use boosting to order image features from most to least discriminative for a given object

- allow high false positive per feature (i.e. it's a weak classifier!)
- select features via boosting
- As feature F_1 to F_N of an object is present \rightarrow probability of nonoccurrence within the image tends to zero





Cranfield UNIVERSITY

Haar Feature Cascades

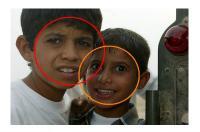
Real-time Generalised Object Recognition

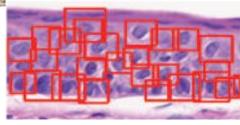
Benefits

- Multi-scale evaluation
 - scale invariant
- Fast, real-time detection
- "Direct" on image
 - no feature extraction
- Haar features
 - contrast/ colour invariant

Limitations

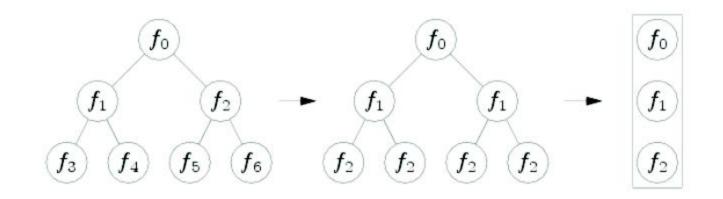
- poor performance on non-rigid objects
- object rotation





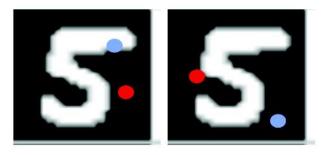
[Breckon / Eichner / Barnes / Han / Gaszczak 08-09]

Cranfield



Concept: "a constrained tree where a simple binary test is performed at each level"

e.g relative intensities of a pair of pixels: $f_1(I) = I(x_a, y_a) > I(x_b, y_b) \quad -> true$ $f_2(I) = I(x_c, y_c) > I(x_d, y_d) \quad -> false$



Images: David Capel, Penn. State.

Cranfield

Ferns = "Semi-Naive" Bayes

Class C_k & feature set $\{f_j\}$

Posterior probability : $\underset{k}{\operatorname{argmax}} P(C_k|f_1, f_2, ..., f_N)$

Via Bayes rule :

 $\underset{k}{\operatorname{argmax}} P(f_1, f_2, ..., f_N | C_k) P(C_k) \qquad \text{(likelihood x prior)}$

Naive Bayes

$$P(f_1, f_2, ..., f_N | C_k) = \prod_{i=1}^N P(f_i | C_k)$$

- assume features are independent
- often invalid assumption

Ferns = "Semi-Naive" Bayes

Group features into sets, F, of size S

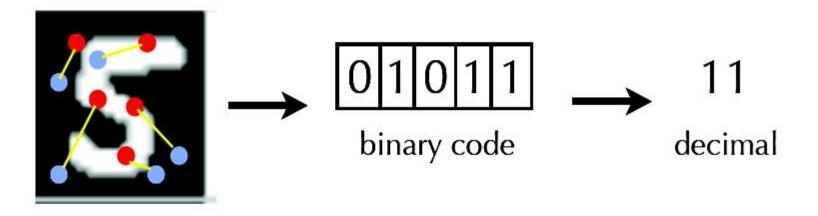
$$F_{l} = \{f_{l,1}, f_{l,2}, ..., f_{l,S}\}$$

Assume groups are conditional independent $P(f_1, f_2, ..., f_N | C_k) = \prod_{l=1}^{L} P(F_l | C_k)$

Perform classification via "Semi-Naive" Bayes approach $Class(\mathbf{f}) \equiv \operatorname*{argmax}_{k} P(C_k) \prod_{l=1}^{L} P(F_l | C_k)$

Ferns ...

Result = S-digit binary code for a given set of S tests



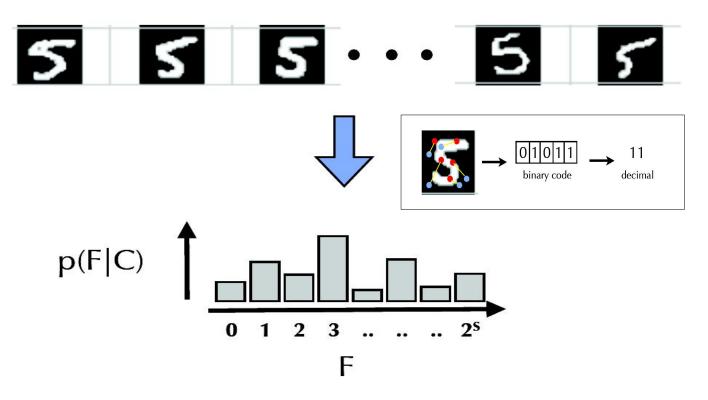
... to be interpreted as an decimal value $0 \rightarrow 2^{\circ}$

Essentially a "hash" (lookup) of S-digit binary value to $0 \rightarrow 2^s$

Images: David Capel, Penn. State.

Ferns ...

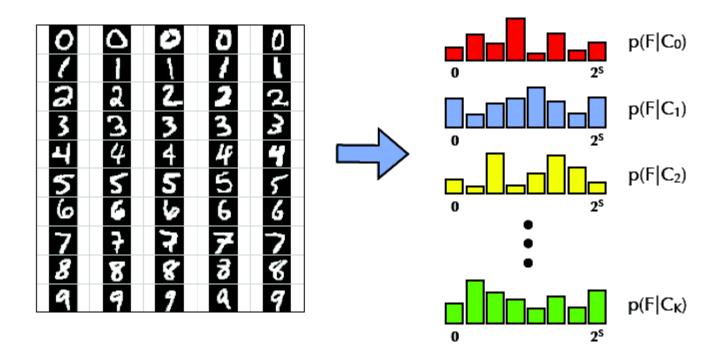
Apply to a large number of (training) examples to learn a multinomial distribution of this "hash" value $0 \rightarrow 2^{s}$



Images: David Capel, Penn. State.

Ferns

Repeat for all classes



... obtain one distribution per class

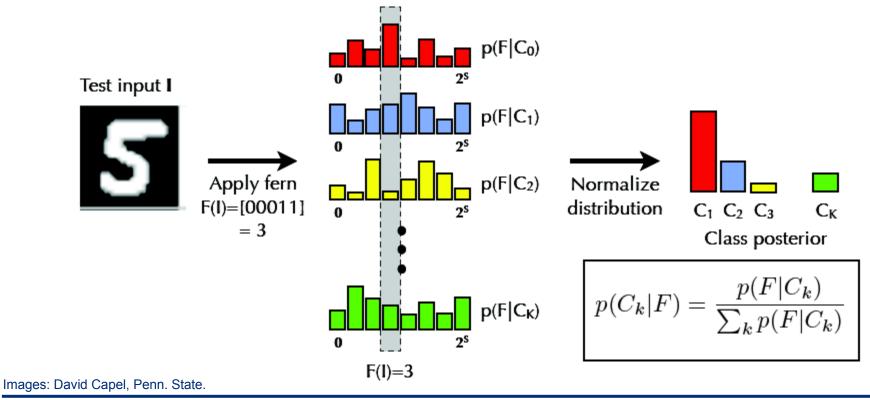
Images: David Capel, Penn. State.

Fern Based Classification

For an **unseen example, I**:

- construct fern
- perform lookup via decimal "hash"
- compute posterior probability for class

Cranfield



Random Ferns

Construct L ferns from random feature subsets

e.g. $F_1 = \{f_2, f_7, f_{22}, f_5, f_9\}$ $F_2 = \{f_4, f_1, f_{11}, f_8, f_3\}$ $F_3 = \{f_6, f_{31}, f_{28}, f_{11}, f_2\}$

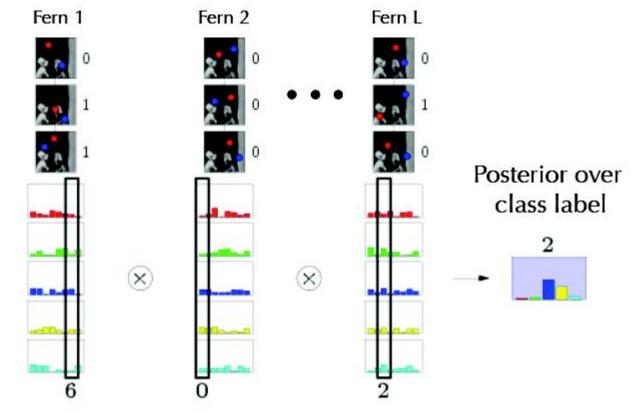
Classify using whole set
 Compute most probable class, C_k, as:

$$Class(\mathbf{f}) \equiv \underset{k}{\operatorname{argmax}} P(C_k) \prod_{l=1}^{L} P(F_l | C_k)$$

Images: David Capel, Penn. State.

Random Ferns

Classification now only involves "fast lookup":

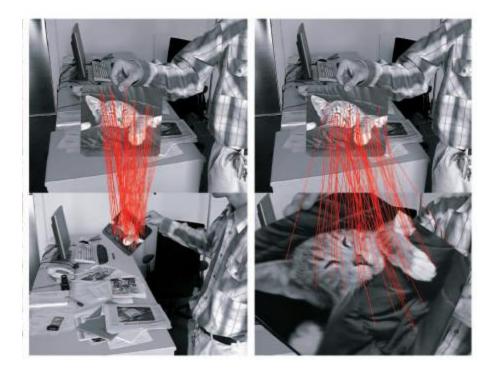


Images: David Capel, Penn. State.

Comparison ...

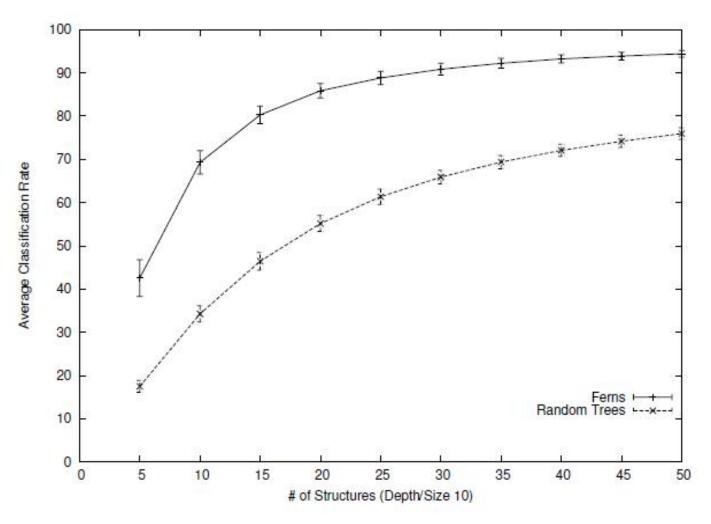
fast key-point matching

- each point is a class
- trained on 1000s affine transforms of same patch
- fast, robust
- S = 10
- ensembles of 5-50 ferns



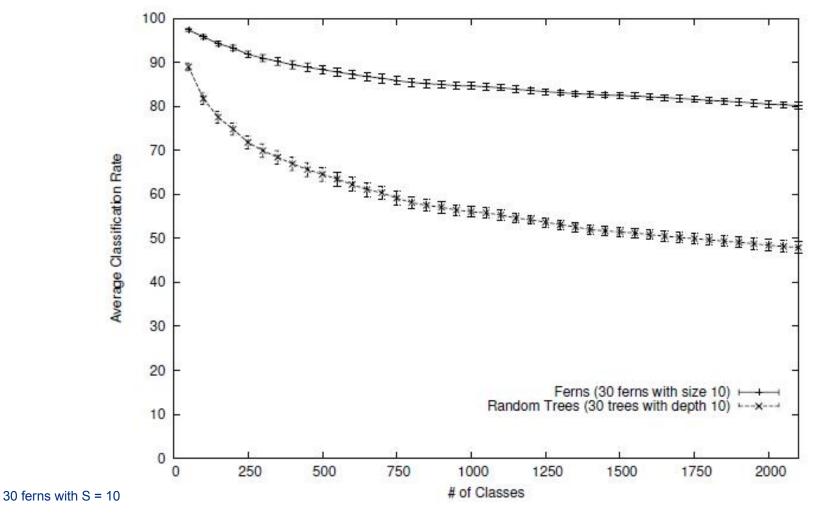
Ozuysal, Mustafa, et al. "Fast keypoint recognition using random ferns." Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.3 (2010): 448-461.

Comparison ...



Images: David Capel, Penn. State.

Comparison ...



Images: David Capel, Penn. State.

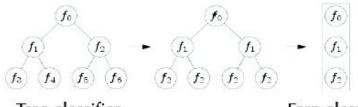
Comparison ...

Random Forests

- decision trees directly learn the posterior $P(C_{k}|F)$
- different sequence of tests in each child node
- training time grows exponentially with tree depth
- combine tree hypotheses by averaging

Ferns

- learn class-conditional distributions $P(F|C_{\mu})$
- same sequence of tests to every input vector
- training time grows linearly with fern size S
- combine hypothesis using Bayes rule (multiplication)



Images: David Capel, Penn. State.

Tree classifier

Fern classifier

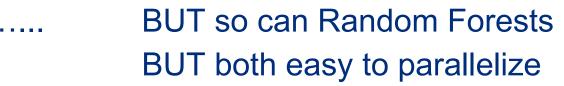
Cran

Comparison ...

Fern classifiers can be very memory hungry, e.g.

- Fern size = 11
- Number of ferns = 50
- Number of classes = 1000
- RAM = 2^s * sizeof(float) * NumFerns * NumClasses = 2048 * 4 * 50 * 1000 = 400 Mbytes!

Example: David Capel, Penn. State.



No Free Lunch! (Theorem)

- I the idea that it is impossible to get something for nothing
- This is very true in Machine Learning
 - approaches that train quickly or require little memory or few training examples produce poor results
 - and vice versa !!!!!
 - poor data = poor learning
 - problems with data = problems with learning
 - problems = {not enough data, poorly labelled, biased, unrepresentative ... }

Cranfield

What we have seen ...

The power of combining *simple* things

Ensemble Classifiers

concept extends to all ML approaches

Decision Forests

Decision Trees back from the grave (or the '80s)

– many, many variants

simplified trees, fast, powerful

– beginning of the story

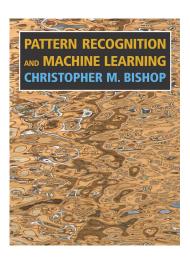
Cranfield UNIVERSITY **Further Reading -** textbooks

Machine Learning (P. Flach), **Cambridge University Press**, 2012.

Pattern Recognition & Machine **Learning - Christopher Bishop** (Springer, 2006)

PETER FLACH Machine Learning that Make Sense of Data

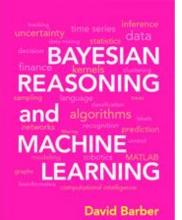
AMERICAN



Cranfield **Further Reading -** textbooks

Bayesian Reasoning and Machine Learning – David Barber

http://www.cs.ucl.ac.uk/staff/d.barber/brml/ (Cambs. Univ. Press, 2012)



Computer Vision: Models, Learning, and Inference – Simon Prince

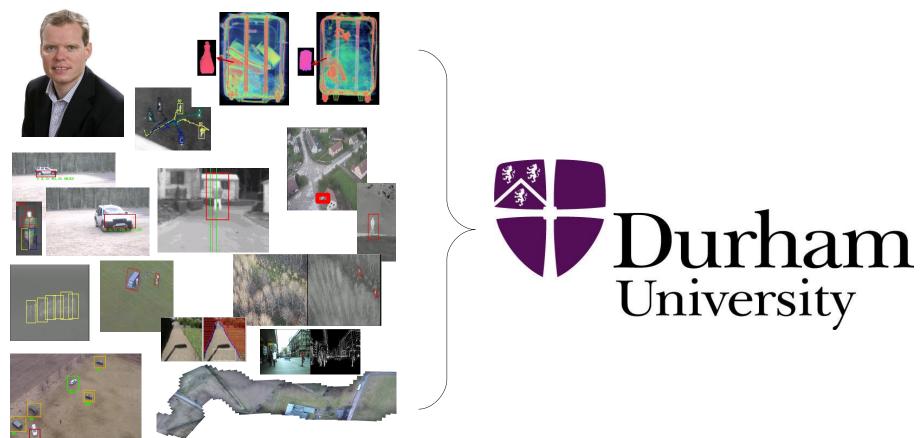
(Springer, 2012) http://www.computervisionmodels.com/

... both very **probability driven**, both available as free PDF online

Thanks ...

www.cranfield.ac.uk/~toby.breckon/mltutorial/ toby.breckon@cranfield.ac.uk

Thanks ...



www.breckon.eu/toby/mltutorial/ toby@breckon.eu