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The bits the whirl-wind left out …..

Reading: 

  
Szeliski 
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Edge Features

Reading: 

  Szeliski -  1.1 + 4.2.1

       (Background: Ch 2 + 3.1 → 3.3)
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Edges as Gradients

Edge detection = differential operators to detect 
gradients of the gray or colour levels in the image

● i.e. Partial Derivatives in x and y



Background: 4Toby Breckon

How do we find 
gradients in an 

image ?
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Image Gradients

Let the image be f(x,y) thus with partial derivatives we 
have:



Background: 6Toby Breckon

Image Gradients

 Image f(x,y) :
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(i,j-1)
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Image Gradients = Convolution

(i,j-1)

(i,j)

(i,j+1)

(i-1,j) (i,j) (i+1,j)
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Aside: Image Convolution

… is essentially the localised weighted sum of the image 
and the convolution kernel (mask) over a N x M pixel 
neighbourhood, at a given location within the image (x,y). 

Input Image

Output Image
Image source: developer.apple.com
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Sobel Edge Detection

 more computationally complex convolution masks 

(convolve image with both, both masks sum to zero)
 edge gradient magnitude is given by:

 edge orientation:
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Sobel Edge Detection

 designed to respond maximally to edges running vertically and 
horizontally

–  one kernel for each of the two perpendicular orientations
  combined to get magnitude at each pixel and display this : 
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Example : Sobel

Results : rough, noisy edges
– true lines, variable response due to gradient strength
– easy to threshold
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Example : Sobel

Results : 
But can still have threshold difficulties

source: HIPR2 © 2003/4
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Sobel Example
Original
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Sobel Example
Sobel
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Sobel on RGB
Sobel on each RGB channel - then recombined
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Sobel on RGB
Sobel on each RGB channel - then recombined
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Sobel Edge Detection - 
Summary

Advantages
– fast,basic edge detection
– simple to implement using arithmetic 

operations
– useful as a measure of localised image 

texture (i.e. structured pattern)

Disadvantages
– output is noisy
– resulting edge width, strength varies

Importance: 
– forms the basis for advanced edge 

detection, shape detection and object 
detection    



Background: 19Toby Breckon

Slide material acknowledgements (some portions): P. Barnum (CMU), N. Dalal and B. Triggs (INRIA), E. Seemann (UK). 

Histograms of 
Orientated 
Gradients

(localized gradient distributions)

Reading: 
● Szeliski – Section 14.1.2
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Reminder … Histograms

 Histogram = statistical distribution of image pixel values
– no structural representation
– different images have very different histograms
– similar images have similar histograms

Pixel Value (0 → 255)
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Edge Distribution Based 
Recognition

(using histograms of edge patterns 
for the recognition of objects)
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Motivation
Recognising classes of object: 

– e.g. people, vehicles

challenges:
– varying {scale, backgrounds, 

illumination, pose, colour 
appearance}

– occlusion 
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Approach: overview
Calculate Histograms of 

Gradient (Edge) 
Orientations

Learn pattern of gradient 
orientations specific to 
given object class
– train machine learning 

classifier to 
differentiate

Search for pattern in 
unseen image examples

Histogram of Orientated Gradients (HOG), [Dalal/Triggs, 2005]
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Step 1: Image Preprocessing

 Gamma Equalization / Correction – optional step
– See: 

http://www.cambridgeincolour.com/tutorials/gamma-correction.htm  

source:http://graphics.stanford.edu/gamma.html

http://www.cambridgeincolour.com/tutorials/gamma-correction.htm


Background: 25Toby Breckon

 Compute gradients over NxM 
image region

– convolve with 

[-1 0 1] / [-1 0 1]T filters

(i.e. Sobel edge response)

– no smoothing

– compute gradient magnitude 
+ direction 
(as per Sobel – lecture 1)

Per pixel: use colour channel with 
greatest magnitude -> final gradient 

Step 2: Compute Gradients

R  G B
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Step 3: Compute Cell 
Histograms

Cell histograms computed over 
CxC (commonly 8x8) pixels
– 9 histogram bins (per cell)
– range 0 → 180 degrees

• → 20 deg. range per bin
 

– histogram entries filled with 
gradient magnitudes

• weighted assignment / 
vote of gradient a pixel 
(x,y) to 4 adjacent cells 
(spatial) and to histogram 
bins (orientation)
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Weighted Assignment - 
Example

 θ=85 degrees
Distance to histogram bin centers

Bin 70 -> 15 degrees
Bin 90 -> 5 degress

Ratios: 5/20=1/4, 15/20=3/4

 Distance to cell centers
 Left: 2, Right: 6
 Top: 2, Bottom: 6

 Ratio Left-Right: 6/8, 2/8
 Ratio Top-Bottom: 6/8, 2/8
 Ratios:

 6/8*6/8 = 36/64 = 9/16
 6/8*2/8 = 12/64 = 3/16
 2/8*6/8 = 12/64 = 3/16
 2/8*2/8 = 4/64   = 1/16

Example courtesy of E. Seemann
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Step 4: Compute Block 
Histograms

Blocks formed of ~2x2 cells
– blocks overlap
– each cell contributes to 

multiple blocks

Block histogram = normalised 
sum of cell histograms
– L2 Norm

Finally … concatenate block 
histograms to give 
HOG descriptor
– high dimensional vector
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HOG descriptor (visualisation)

Image Region Cell Histograms
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HOG descriptor

Cell Histograms

feature vector, 

V
HOG

 = {…, …, …. }

(dimension typically ~4000+)
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HOG “Pattern” occurrence ...
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Step 5: Trained Classifier 
Approach

 A Machine Learning approach …. 
(typically Support Vector Machine)

+ve class (people) examples
(all aligned so “subject in centre of image)

-ve class (not people) examples
(random, representative of backgrounds)

HOG
Descriptor
Calculation

HOG
Descriptor
Calculation

Classifier
Training

Classifier
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Feature Points
(localized salient points within gradient 

space)

Slide material acknowledgements (some portions): Richard Szeliski, Microsoft Research - CVPR 2007  - Fei-Fei / Fergus / Torralba / Sivic

Reading: 

Szeliski – Section 4.1 + 6.1 + 14.3 + 14.4
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Outline of Approach
 Identify generic features 

within a sample object

 Identify generic features 
within a query scene image

 If a subset of scene 
features and sample 
features match

→ Sample Object 
Detected

(at a given pose)
Generalize to object 

classes {people, car ....}

Sample Features

Scene Features

↔ Corresponding Features
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Require: Invariant local features

 Find features that are invariant to transformations
– geometric invariance:  translation, rotation, scale
– image intensity invariance:  brightness, exposure, noise .…

Feature Descriptors : an invariant method of describing localized image features 



Background: 36Toby Breckon

 Locality 

– features are local, so robust to occlusion and clutter

 Distinctiveness

– can differentiate a large database of objects
 Quantity

– hundreds or thousands in a single image

 Efficiency

– real-time performance achievable
 Generality

– exploit different types of features in different situations

Why local features ?
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What makes a good feature?
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Look for image regions that are unusual
Lead to unambiguous matches in other images

How to define “unusual”?
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Local measures of uniqueness

Suppose we only consider a small window of pixels
– What defines whether a feature is a good or bad 

candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.
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Feature detection

“flat” region:
no change in all 
directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions

Local measure of feature uniqueness
– How does the window change when you shift it?
– Shifting the window in any direction causes a big change

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.
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Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

Sum of Squared (pixel) Differences (SSD)
• this defines an SSD “error” of E(u,v):

Feature detection:  the maths

W
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Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is 
good

Plugging this into the formula on the previous slide…

Small motion assumption
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Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

Sum of Squared Differences (SSD)
• this defines an SSD “error” of E(u,v):

Feature detection:  the maths

W
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This can be rewritten:

For the example above
• You can move the centre of the green window to anywhere on the 

blue unit circle
• Which directions will result in the largest and smallest E values?
• We can find these directions by looking at the eigenvectors of H

Feature detection:  the maths



Background: 45Toby Breckon

Quick eigenvalue/eigenvector review:
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = H is a 2x2 matrix, so we have

– The solution:

Once you know , you find x by solving
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This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

 + = amount of increase in direction x+

• x- = direction of smallest increase in E. 

 
-
 = amount of increase in direction x-

 x-

 x+

Feature detection:  the maths
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How are +, x+, -, and x- relevant for feature 
detection?

What’s our feature scoring function?
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Feature detection:  the maths

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit vectors [u v]

• this minimum is given by the smaller eigenvalue (-) of H
•corresponding eigenvector
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Feature detection summary
Approach Summary:

• Compute the gradient at each point in the image (e.g. Sobel)

• Create the H matrix from the entries in the gradient
• Compute the Eigenvalues 

• Find points with large response (+ > threshold)

• Choose those points where - is a local maximum as features
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Feature Points - Harris

- is a variant of the “Harris operator” for feature 
detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to - but less expensive (no square root)

• Called the “Harris Corner Detector” or “Harris Operator”

• Lots of other detectors, this is one of the most popular and earliest
[Harris / Stephens, 1988]
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Feature Points - Harris
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Feature Points - Harris

f value (red high, blue low)
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Feature Points - Harris

f thresholded > value
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Feature Points - Harris

f local maxima
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Feature Points - Harris

Harris Feature Points (red)
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What about Feature Invariance ?

Suppose you rotate the image by some angle
• Will you still pick up the same features?

What if you change the image brightness?

(i.e. lighting)

LOOK BACK AT 
GIRAFFE EXAMPLE

But what about Scale?

[ Ideally (for recognition) we want invariance to all 
3! ]
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Scale invariant feature detection (SIFT)

Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f
• f is a local maximum in both position and scale

• Common definition of f:  difference of two Gaussian 
filtered images with different σ
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Difference of Gaussian (DoG)

σ=1.0;σ=1.4; σ=5;σ=7; σ=10;σ=14;

1. Compute Difference of Gaussian 
(i.e. same image, two diff. levels of Gauss. 
filtering, subtract one from other) 
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Difference of Gaussian (DoG)Difference of Gaussian (DoG)

-

=

σ=1.0 σ=1.4
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Perform over multi-scales (octaves)

DoG performed over multiple scales

Consistent feature points identified 
     as those present over multiple scales (from DoG) [Lowe '04]
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Feature Point Filtering

Image source:wikipedia

2. Find the local maximal pixels in space and 
scale 

(i.e. over σ, max of 3x3 neighbourhood)

3. Interpolate intermediate values 

(i.e. to get point location accurately)

4. Discard feature points in regions of low-
contrast

5. Compute Hessian matrix, H (as before)

    Compute ratio R:

    (equiv. to ratio of eigenvalues of H)

    Reject if R > (r th + 1) / r th) (r th = 10)
Removes poorly localised points (varying “along/on edge” 
etc.)
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We know how to detect good points
Next question: How to match them? (i.e. 
recognition)

Lots of possibilities (this is a popular research 
area)

• Simple option:  match square windows around the point
• State of the art approach:  SIFT

– David Lowe, UBC  http://www.cs.ubc.ca/~lowe/keypoints/ 

?

Feature Point Descriptors

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
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Key Requirement - Invariance

Suppose we are comparing two images I1 and I2

• I2 may be a transformed version of I1

• What kinds of transformations are we likely to encounter 
in practice?

Want to find the same features regardless of the 
transformation

• This is called transformational invariance
• Most feature methods are designed to be invariant to 

– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)
– Limited affine transformations (some are fully affine invariant)

– Limited illumination/contrast changes
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Achieving invariance ....

Need both of the following:

1. Make sure your detector is invariant
• Harris is invariant to translation and rotation

• Scale is trickier .... use SIFT
– common approach is to detect features at many scales using a 

Gaussian pyramid (e.g., MOPS)
– more sophisticated methods find “the best scale” to represent 

each feature (e.g., SIFT)

2.  Design an invariant feature descriptor
• A descriptor captures the information in a region around the 

detected feature point
• The simplest descriptor:  a square window of pixels 

– What’s this invariant to?

• Let’s look at some better approaches…
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Find dominant orientation of the image patch
– This is given by x+, the eigenvector of H corresponding to 

+ is the larger eigenvalue

• Can rotate / align the descriptor image patch according to 
this angle

Rotation invariance for feature descriptors

Image: Matthew Brown, UBC
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Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform (SIFT)

Adapted from slide by David Lowe, UBC.

0 2
angle histogram
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SIFT descriptor

Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor
• Determine descriptor orientation as peak of histogram 

• (+ secondary peaks within 80% of primary peak)

Adapted from slide by David Lowe, UBC.
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SIFT Feature Matching
Given a feature in I1, how to find the best match in 

I2?
– Define distance function that compares two descriptors

– Test all the features in I2, find the one with min distance

I1 I2

f1 f2
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Feature Distance

I1 I2

f1 f2

How to define the difference between two features f1, f2?

• Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’)

– f2 is best SSD match to f1 in I2

– f2’  is  2nd best SSD match to f1 in I2

– gives small values for ambiguous matches
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SIFT Feature Distance
Efficiency

– can compare features as N-Dimensional vectors in RN using 
k-D trees (nearest neighbour search)

• Query f1 to fj reponse in linear time

– several optimisations on this approach 

Original SIFT approach [Lowe 2004] 
– variation on k-D tree approach 
– probability of match correct = ratio of 1st nearest match 

to 2nd nearest match
• Reject all matches with ratio > 0.8

• Effect = eliminates ~90% of false matches, discards ~5% 
of correct matches, only very “unique” matches are kept
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SIFT Feature Match Examples

NASA Mars Rover images with SIFT feature matches 
(Figure by Noah Snavely)
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SIFT Feature Match Examples
Extraordinarily robust matching technique

• changes in viewpoint
– Up to about 60 degree out of plane rotation

• significant changes in illumination
– Sometimes even day vs. night (below)

• Fast and efficient—can run in (near) real time 
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Detecting an Object – Method 1

Select a subset of 3 matches 
– RANSAC on matches

Estimate Object Pose
– Least Squares Method of 

lecture 1 between 2D points 
matches (instead of 2D edge 
matches)

Verification of Pose
– Apply transformation of object 

to image and test number of 
SIFT point matches within pixel 
distance  < dt

(Images: David Lowe, UBC)
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Detecting an Object – Method 2

Each SIFT feature match 
specifies a potential 
{position | rotation | scale}

Use a Hough Transform based 
voting method to identify 
clusters of feature matches 
pointing to consistent 
{position | rotation | scale}

Estimate and verify pose of top 
N clusters as per Method 1

(Images: David Lowe, UBC)
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Detecting Classes of Objects

Cluster Features in Rn space
– over (lots of) example (training) 

images
– K-means clustering (need to pick k!)

Cluster “membership” for a given object 
example creates a histogram of 
feature occurrence

Use histogram of feature occurrence 
as inputs to a machine learning 
classification algorithm
– (Support Vector Machines)

....

ML Bike
Violin
....
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“Bag of (Visual) Words” (BoVW  / BOW) 
Recognition

ObjectObject Bag of Bag of 
‘words’‘words’
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A clarification: definition of “BoVW”
Strict definition (a.k.a. “bag of features)

– Independent features 

– histogram representation
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Analogy to documents

Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant 
ones. Our perception of the world around us is 
based essentially on the messages that reach the 
brain from our eyes. For a long time it was 
thought that the retinal image was transmitted 
point by point to visual centers in the brain; the 
cerebral cortex was a movie screen, so to speak, 
upon which the image in the eye was projected. 
Through the discoveries of Hubel and Wiesel we 
now know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By following 
the visual impulses along their path to the various 
cell layers of the optical cortex, Hubel and Wiesel 
have been able to demonstrate that the message 
about the image falling on the retina undergoes a 
step-wise analysis in a system of nerve cells 
stored in columns. In this system each cell has its 
specific function and is responsible for a specific 
detail in the pattern of the retinal image.

sensory, brain, 
visual, perception, 

retinal, cerebral cortex,
eye, cell, optical 

nerve, image
Hubel, Wiesel

China is forecasting a trade surplus of $90bn 
(£51bn) to $100bn this year, a threefold increase 
on 2004's $32bn. The Commerce Ministry said 
the surplus would be created by a predicted 30% 
jump in exports to $750bn, compared with a 18% 
rise in imports to $660bn. The figures are likely to 
further annoy the US, which has long argued that 
China's exports are unfairly helped by a 
deliberately undervalued yuan.  Beijing agrees the 
surplus is too high, but says the yuan is only one 
factor. Bank of China governor Zhou Xiaochuan 
said the country also needed to do more to boost 
domestic demand so more goods stayed within the 
country. China increased the value of the yuan 
against the dollar by 2.1% in July and permitted it 
to trade within a narrow band, but the US wants 
the yuan to be allowed to trade freely. However, 
Beijing has made it clear that it will take its time 
and tread carefully before allowing the yuan to 
rise further in value.

China, trade, 
surplus, commerce, 

exports, imports, US, 
yuan, bank, domestic, 

foreign, increase, 
trade, value
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Object classObject class
decisiondecision

learninglearning

feature detection
& representation

codewords dictionarycodewords dictionary

image representation

Object class modelsObject class models
(and/or) classifiers(and/or) classifiers

recognitionrecognition
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BoVW : Stage 1 - Feature detection and 
representation

Normalize 
patch

Detect patches
[Harris Feature Points / SIFT]

Compute 
descriptor

   e.g. SIFT [Lowe’99]

Local interest operator (Harris)
or

Regular grid (every N pixels in X and Y)

Slide credit: Josef Sivic
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…

BoVW : Stage 1 - Feature detection and 
representation

Over multiple image ….. (100s / 1000s +) 

Slide credit: Josef Sivic
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BoVW : Stage 2 -  Codewords dictionary formation

…

128-D SIFT space

Via k-means clustering to find k clusters of 
feature descriptors

(user defines/choose – k)

The centre of each cluster forms the codewords.

The set  of codewords is known as the dictionary.

Slide credit: Josef Sivic
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BoVW : Stage 3 -  Encode images as occurrences 
of codewords (forming histogram of feature 

occurrence)

Vector quantization

…

Slide credit: Josef Sivic128-D SIFT space

+
+

+

Codewords
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Can visualize codewords as image 
patches in examples

Sivic et al. 2005
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BoW : Stage 4 BoVW Image representation

…..

F
re

qu
en

cy
 o

f o
cc

ur
re

n
ce

Codewords (1 - K)

Histogram of features 
assigned to each cluster 
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Feature 
Extraction

.....

[Multi-dimensional 
descriptors - SURF,
SIFT, . ...]

Clustering for
Dictionary

Generation 

[cluster centres k-
Means
or variant ...]

+ve 
examples 
(people)

Feature
Histogram
Generation

Feature 
Extraction

Feature 
Extraction

-ve examples
(not people)

Classifier
Training [SVM, 

or Random Forest, Bayesian ...]

-ve +ve

-ve +ve

Classification

OFF-LINE
(training)

ON-LINE
(real-time)

Trained
Classifier

Feature
Histogram
Generation

detected - [+ve | 
-ve]

video (“live”) input

Dictionary

BoVW : Complete Architecture
(example: thermal people detection)
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Uses of BoVW representation

• Treat as feature vector for standard classifier
– e.g SVM

• Cluster BoW vectors over image collection
– Discover visual themes (via clustering)

• Hierarchical models 
– Decompose scene/object into parts


