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Vision & Language

The bits the whirl-wind left out .....

Reading: s

Computer Vision

Algorithms and Applications

Szeliski

Toby Breckon

Background: 1
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Edge Features

Reading:
Szeliski- 1.1 +4.2.1
(Background: Ch 2 + 3.1 — 3.3)

Toby Breckon Background: 2
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Edges as Gradients

B Edge detection = differential operators to detect
gradients of the gray or colour levels in the image

e If the image is I(x,y) then the basic idea is to compute

s, 0

Vi(z,y) =% I(z,y) + ya—yI (,y)

* i.e. Partial Derivatives in x and y

Toby Breckon Background: 3
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How do we find
gradients in an
iImage ?

Toby Breckon Background: 4
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Image Gradients

B Let the image be f(x,y) thus with partial derivatives we
have:

gf(x,y) _ f(x_I_hay})l_f(xay)

e . P,y +b) — fe,y)
fla,y) = HOEEN =T

Toby Breckon Background: 5
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Image Gradients

H Image f(x,y) :

o With a digital image [;;, we can replace the partial derivatives
with differenes

Apliy = liv1,j — 1
and

Aylij = Lije1 — 1

e N.B. These operations are equivalent to convolving [;; with
the digital function (—1,1) in the x direction to give A, I;; and
convolving [;; with (—1, 1) in the y direction to give A, ;.

Toby Breckon Background: 6
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Toby Breckon
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Image Gradients = Convolution

e Example: to obtain digital gradients centered at (7, j), we use
the differencing scheme

Apliy = liv1,j — Lic1

Ayfr,;j = I@::j_|_1 — Iz',j—l (1'19.]) (H_la.])
In this case, the convolution kernals are
(-1 0 1)
and ) (1J+1)
1
respectively. (i,j-1)

Toby Breckon Background: 8
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Aside: Image Convolution

M ... is essentially the localised weighted sum of the image
and the convolution kernel (mask) over a N x M pixel
neighbourhood, at a given location within the image (Xx,y).

(4 x0)

K
Center element of the kemel is placed over the Eg " g;

source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixals. Eg : ?;
(0Ox1)
Source pixel Eg : ?;
+(-4x2)
-8
Input Image
Convolution kernel
(emboss)
Mew pixel value (destination pixel) : LT
=" Output Image

Image source: developer.apple.com

Toby Breckon Background: 9



Sobel Edge Detection

-1 1 0 [ +1 +1 | +2 | +1

-2 | 0 [ +2 0|10 (0

-1 | 0 | +1 -1 -2 | -1
G X Gy

B more computationally complex convolution masks
(convolve image with both, both masks sum to zero)
B edge gradient magnitude is given by:

|G| — 1/{;32 ~+ Gyﬂ
B edge orientation: B = arctan {Gny.T}

Toby Breckon
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Sobel Edge Detection
-1 0 | +1 +1 | +2 [ +1
-2 | 0 |+2 00| O
1| 0 | +1 1| -2 |-1
Gx Gy
B designed to respond maximally to edges running vertically and
horizontally

— one kernel for each of the two perpendicular orientations
B combined to get magnitude at each pixel and display this :

Gl =Gz +Gy* |G| = |Gz| + |Gyl

Toby Breckon Background: 11
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Example Sobel

source: HIPR2 © 2003/4

B Results : rough, noisy edges
— true lines, variable response due to gradient strength
— easy to threshold

Toby Breckon Background: 12
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Example : Sobel

source: HIPR2 © 2003/4

H Results :
But can still have threshold difficulties

Toby Breckon Background: 13
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Sobel Example

B Original

Toby Breckon Background: 14
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Sobel Example

B Sobel
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Sobel on RGB

B Sobel on each RGB channel - then recombined

Toby Breckon Background: 16
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Sobel on RGB

B Sobel on each RGB channel - then recombined

Toby Breckon Background: 17
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Sobel Edge Detection - ™

B Advantages
— fast,basic edge detection

— simple to implement using arithmetic
operations

— useful as a measure of localised image
texture (i.e. structured pattern)

B Disadvantages
— output is noisy
— resulting edge width, strength varies

B Importance:

— forms the basis for advanced edge
detection, shape detection and object
detection

Toby Breckon
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Histograms of
Orientated
Gradients

(localized gradient distributions)

Slide material acknowledgements (some portions): P. Barnum (CMU), N. Dalal and B. Triggs (INRIA), E. Seemann (UK).

Reading:
» Szeliski — Section 14.1.2

Toby Breckon Background: 19
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Reminder ... Histograms
AL

Number of pixels (with each value)

1 1 1 1
n] a0 100 150 200 250

Pixel Value (0 — 255)

B Histogram = statistical distribution of image pixel values
— no structural representation
— different images have very different histograms
— similar images have similar histograms

Toby Breckon Background: 20
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Edge Distribution Based
Recognition

(using histograms of edge patterns
for the recognition of objects)

Toby Breckon Background: 21
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Motivation

B Recognising classes of object:
— e.g. people, vehicles

H challenges:

— varying {scale, backgrounds
Illumination, pose, colour
appearance}

— occlusion

Toby Breckon Background: 22
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Approach: overview

B Calculate Histograms of
Gradient (Edge)
Orientations

B Learn pattern of gradient
orientations specific to
given object class

— train machine learning
classifier to
differentiate

B Search for pattern in
unseen image examples

Histogram of Orientated Gradients (HOG), [paiaitriggs, 2005]

Toby Breckon Background: 23
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Step 1: Image Preprocessing

- Lo s '~

éource:http://gfaphics.stanford.edu/gamma.html

B Gamma Equalization / Correction — optional step

— See:
http.//www.cambridgeincolour.com/tutorials/gamma-correction.htm

Toby Breckon Background: 24


http://www.cambridgeincolour.com/tutorials/gamma-correction.htm
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Step 2: Compute Gradients

B Compute gradients over NxM
image region
— convolve with
[-1 0 1]/ [-1 O 1] filters
(i.e. Sobel edge response)
— Nno smoothing

— compute gradient magnitude
+ direction
(as per Sobel — lecture 1)

Per pixel: use colour channel with
greatest magnitude -> final gradient

Toby Breckon Background: 25



Step 3: Compute Cell g
Histograms

B Cell histograms computed over
CxC (commonly 8x8) pixels

— 9 histogram bins (per cell)
— range 0 — 180 degrees
« — 20 deg. range per bin

— histogram entries filled with
gradient magnitudes Cell ——»

- weighted assignment /
vote of gradient a pixel
(x,y) to 4 adjacent cells
(spatial) and to histogram
bins (orientation)

~ S . d |
e SRR '
Toby Breckon i Background: 26
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Weighted Assignment - ™
Example

0=85 degrees
Distance to histogram bin centers '7\+
Bin 70 -> 15 degrees
Bin90->5degress | Q11 BRIl
Ratios: 5/20=1/4, 15/20=3/4 1030 edient arientations

Distance to cell centers
= Left: 2, Right: 6
= Top: 2, Bottom: 6 |:h;[|]:[|] hdﬂ:l]]
'S".-"‘H?\D--""ﬁ;;’

Ratio Left-Right: 6/8, 2/8 ) -
Ratio Top-Bottom: 6/8, 2/8
Ratios: / \
- bl hillin

6/8*6/8 = 36/64 = 9/16
6/8*2/8 = 12/64 = 3/16
2/8*6/8 = 12/64 = 3/16
2/8*2/8 = 4/64 = 1/16

Example courtesy of E. Seemann

Toby Breckon Background: 27
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Step 4: Compute Block "
Hlstograms

B Blocks formed of ~2x2 cells
— blocks overlap

— each cell contributes to
multiple blocks

B Block histogram = normalised
sum of cell histograms

— L2 Norm

Cell| ——»

B Finally ... concatenate block
histograms to give Block ———»-

HOG descriptor Overies
— high dimensional vector of Blocks

Toby Breckon Background: 28
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HOG descriptor (visualisation)

Image Region Cell Histograms

Toby Breckon Background: 29
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HOG descriptor

Cell Histograms

Toby Breckon Background: 30
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HOG “Pattern” occurrence ...

sity

Toby Breckon Background: 31
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Step &: Trained Classifier =
Afproach

+ve class (people) examples

(all aligned so “subject in centre of image) ; Classifier

Descriptor
Calculation

Training

HOG
Descriptor
Calculation

|

Classifier

i A Machine Learning approach ....
(typically Support Vector Machine)

(random, representative of backgrounds)

Toby Breckon Background: 32
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Feature Points

(localized salient points within gradient
space)

Reading:
Szeliski — Section 4.1 + 6.1 + 14.3 +14.4

Slide material acknowledgements (some portions): Richard Szeliski, Microsoft Research - CVPR 2007 - Fei-Fei/ Fergus / Torralba / Sivic

Toby Breckon Background: 33
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Outline of Approach

B |[dentify generic features iy
within a sample object fei &> A Sample Features

B |[dentify generic features
within a query scene image
Scene Features

B If a subset of scene
features and sample p
features match L

— Sample Object
Detected
(at a given pose)
M Generalize to object
classes {people, car....}

Toby Breckon Background: 34
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Require: Invariant local features

B Find features that are invariant to transformations
— geometric invariance: translation, rotation, scale
— image intensity invariance: brightness, exposure, noise ....

Feature Descriptors : an invariant method of describing localized image features

Toby Breckon Background: 35
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Why local features ?

B Locality
— features are local, so robust to occlusion and clutter

B Distinctiveness

— can differentiate a large database of objects
B Quantity

— hundreds or thousands in a single image

m Efficiency

— real-time performance achievable
B Generality

— exploit different types of features in different situations

Toby Breckon Background: 36
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What makes a good feature?

Background: 37
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Look for image regions that are unusual
Lead to unambiguous matches in other images

How to define “unusual’?

Toby Breckon Background: 38
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Local measures of uniqueness

Suppose we only consider a small window of pixels

— What defines whether a feature is a good or bad
candidate?

IR NG N

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.
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Local measure of feature uniqueness

— How does the window change when you shift it?

— Shifting the window in any direction causes a big change

N
AN

“flat” region: “edge”: ‘corner’:
no change in all no change along significant change
directions the edge direction in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Toby Breckon Background: 40
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Feature detection: the maths

Consider shifting the window W by (up=

* how do the pixels in W change?
* compare each pixel before and after by W
Sum of Squared (pixel) Differences (SSD)

* this defines an SSD “error” of E(u,v): \

Buo)= Y [ +uy+ov)—Iy)
(x,y)eW

Toby Breckon Background: 41
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Small motion assumption

Taylor Series expansion of I:

I(z4u, y+v) = I(z,y)+ L u- g:{; Fhigher order terms

If the motion (u,v) is small, then first order approx is
good

I(z 4 u,y +v) = I(z,y) + ghu + Gho

~ I(w,y) + Lo 1y] [Tj]

shorthand: I, = 4L

Toby Breckon Background: 42



28
P Durham

University

Feature detection: the maths

Consider shifting the window W by (u,V

* how do the pixels in W change? W
* compare each pixel before and after by

Sum of Squared Differences (SSD)

* this defines an SSD “error” of E(u,v): \
E(u,v) = Y [I(z+u,y+v)—I(z,y)
(x,y)eW
" 2
~ ¥ U+ )| ] -1
(x,y)eW
w112
~ 2 =t
(x,y)eW

Toby Breckon Background: 43
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Feature detection: the maths

This can be rewritten:

(x,y)eW \ Y
|
\ 121
)
1 N\

For the example above

* You can move the centre of the green window to anywhere on the
blue unit circle

* Which directions will result in the largest and smallest E values?
* We can find these directions by looking at the eigenvectors of H

Toby Breckon Background: 44
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Quick eigenvalue/eigenvector review:

The eigenvectors of a matrix A are the vectors x that satisfy:
Ar = Az

The scalar A is the eigenvalue corresponding to x
— The eigenvalues are found by solving:

det(A— X)) =0

— Inour case, A = His a 2x2 matrix, so we have

hi1 — A P12 B
det[ By By — A } =0

— Thesc = .
Ay = 3 [(hll + hag) = \/4h12h21 + (h11 — ha2) }

-

Once you know A, you find x by solving| A11 — A hi2 T | _
ha1 hao — A Y

Toby Breckon Background: 45
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Feature detection: the maths
This can be rewritten:

o= 3l L
I

|

X, H

X, N

Eigenvalues and eigenvectors of H
Define shifts with the smallest and largest change (E value)
« X, = direction of largest increase in E. H:U_|_ _ )\+:13+

Hrxr_ = M_x_

V A, = amount of increase in direction x,
« x_ = direction of smallest increase in E.

Y A = amount of increase in direction x_
Toby Breckon ) Background: 46
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How are A,, X,, A, and x_relevant for feature

detection?
What's our feature scoring function?

Toby Breckon Background: 47
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Feature detection: the maths

Want E(u,v) to be large for small shifts in all directions

the minimum of E(u,v) should be large, over all unit vectors [u V]
this minimum is given by the smaller eigenvalue (\)) of H

scorresponding eigenvector

Toby Breckon Background: 48
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Feature detection summary

Approach Summary:

Compute the gradient at each point in the image (e.g. Sobel)
* Create the H matrix from the entries in the gradient
* Compute the Eigenvalues
« Find points with large response (A, > threshold)

« Choose those points where A _is a local maximum as features

Toby Breckon Background: 49
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Feature Points - Harris

A\ _is a variant of the “Harris operator” for feature
detection A Ao
AL+ A2
_determinant(H)
- trace(H)

« The trace is the sum of the diagonals, i.e., trace(H) = h,, + h,,
« Very similar to A_but less expensive (no square root)

* Called the “Harris Corner Detector” or “Harris Operator”

* Lots of other detectors, this is one of the most popular and earliest

[Harris / Stephens, 1988]
Toby Breckon Background: 50
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Feature Points - Harris

Toby Breckon Background: 51
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Featur Points - Harris

4 3 M B
y |9 i - i
: g -
1 t ™ -, & \
L - .
g 1

f value (red high, blue low)
Toby Breckon Background: 52
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Feature Points - arris

f local maxima




DA ]
Y Durham

University

Feature Points - Harris

J—
e

%)

|%’

I~
0

R 4
N | },’ 4

RS

i,
e

=L = -
Harris Feature Points (red)
Toby Breckon Background: 55
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What about Feature Invariance ?

Suppose you rotate the image by some angle
*  Will you still pick up the same features?

What if you change the image brightness?
(i.e. lighting)

LOOK BACK AT
GIRAFFE EXAMPLE

But what about Scale?

Toby Breckon .. i . Background: 56
IFldaallyy (for recnocnitinn) we want invzarianca tn all
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Scale invariant feature detection (S/FT)

Suppose you're looking for corners

Key idea: find scale that gives local maximum of f
* fis alocal maximum in both position and scale

* Common definition of f: difference of two Gaussian
filtered images with different o

Toby Breckon Background: 57
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Difference of Gaussian (DoG)

1. Compute Difference of Gaussian

(i.e. same image, two diff. levels of Gauss.
filtering, subtract one from other)

0=1.0;0=1.4;
Toby Breckon Background: 58
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Difference of Gaussian (DoG)

Toby Breckon
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Perform over multi-scales (octaves)

%
|

ol A—
e |
octave) j?)@

Y nY DY

Scale >@—>

(first

octave) >9 »
=

Difference of
Gaussian (DOG)

Gaussian

B DoG performed over multiple scales

B Consistent feature points identified

P

Scale S e 7
)

T e
A A

LA A T

o5
P T
£ SRR
& s xS

as those present over multiple scales (from DoG)  /zowe 04

Toby Breckon

Background: 60
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Feature Point Filtering

2. Find the local maximal pixels in space and
scale

(i.e. over o, max of 3x3 neighbourhood)

3. Interpolate intermediate values
(i.e. to get point location accurately)

4. Discard feature points in regions of low-
confrast

5. Compute Hessia n_ (trace(H))?* Hefore)
Compute ratio R:  determinant(H)
(equiv. to ratio of eigenvalues of H)
Rejectif R> (rth+ 1) /rt) (rth=10)

Removes poorly localised points (varying “along/on edge”
efc.)

: : Background: 61
Image source:wikipedia
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Feature Point Descriptors =~

We know how to detect good points
Next question: How to match them? (i.e.
recognition)

Lots of possibilities (this is a popular research
area)
* Simple option: match square windows around the point

« State of the art approach: SIFT
Toby Breckon — David LOWG, UBC / Background: 62


http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
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Key Requirement - Invariance

Suppose we are comparing two images |, and |,

|, may be a transformed version of |,

* What kinds of transformations are we likely to encounter
in practice?

Want to find the same features regardless of the

transformation
* This is called transformational invariance

* Most feature methods are designed to be invariant to
— Translation, 2D rotation, scale

* They can usually also handle
— Limited 3D rotations (SIFT works up to about 60 degrees)
— Limited affine transformations (some are fully affine invariant)
Toby Breckon — Limited illumination/contrast changes Background: 63
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Achieving Invariance ....

Need both of the following:

1. Make sure your detector is invariant

* Harris is invariant to translation and rotation
 Scale is trickier .... use SIFT

— common approach is to detect features at many scales using a
Gaussian pyramid (e.g., MOPS)

— more sophisticated methods find “the best scale” to represent
each feature (e.g., SIFT)

2. Design an invariant feature descriptor
* A descriptor captures the information in a region around the

detected feature point
* The simplest descriptor: a square window of pixels i d
Background: 64

— What’s this invariant to?
oy recion+ Let’s look-at some better approaches. .
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Rotation invariance for feature descriptors™ "

Find dominant orientation of the image patch
— This is given by x,, the eigenvector of H corresponding to
A, is the larger eigenvalue

* Can rotate / align the descriptor image patch according to
this angle

Image: Matthew Brown, UBC

Toby Breckon Background: 65
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Scale Invariant Feature Transform (SIFT)

Basic idea:
* Take 16x16 square window around detected feature
* Compute edge orientation (angle of the gradient - 90°) for each pixel
* Throw out weak edges (threshold gradient magnitude)
* Create histogram of surviving edge orientations

[
>

0 27

angle histogram

g

Adapted from slide by David Lowe, UBC.
Toby Breckon Background: 66

Image gradients
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SIFT descriptor

Full version

Toby Breckon

Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
Compute an orientation histogram for each cell
16 cells * 8 orientations = 128 dimensional descriptor
Determine descriptor orientation as peak of histogram
* (+ secondary peaks within 80% of primary peak)

m
i i E‘:

Image gradients Keypoint descriptor
Adapted from slide by David Lowe, UBC.
Background: 67
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SIFT Feature Matching

B Given a feature in /,, how to find the best match in
Ig?
— Define distance function that compares two descriptors
— Test all the features in /,, find the one with min distance

Toby Breckon Background: 68
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Feature Distance

How to define the difference between two features f,, f,?

- Better approach: ratio distance = SSD(f,, f,) / SSD(f,, 1,)
— f,is best SSD match to f, in /,
— £, is 2" best SSD match to f, in /,
— gives small values for ambiguous matches

Toby Breckon Background: 69
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SIFT Feature Distance

H Efficiency

— can compare features as N-Dimensional vectors in RN using
k-D trees (nearest neighbour search)

* Query f, to f,reponse in linear time
— several optimisations on this approach

® Original SIFT approach [Lowe 2004]
— variation on k-D tree approach

— probability of match correct = ratio of 1st nearest match
to 2nd nearest match

* Reject all matches with ratio > 0.8

 Effect = eliminates ~90% of false matches, discards ~5%
of correct matches, only very “unique” matches are kept

Toby Breckon Background: 70
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SIFT Feature Match Examples

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)

Toby Breckon Background: 71
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SIFT Feature Match Examples

Extraordinarily robust matching technique
* changes in viewpoint
— Up to about 60 degree out of plane rotation
* significant changes in illumination
— Sometimes even day vs. night (below)
* Fast and efficient—can run in (near) real time

Toby Breckon Background: 72
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Detecting an Object — Method 1

B Select a subset of 3 matches
— RANSAC on matches

B Estimate Object Pose

— Least Squares Method of
lecture 1 between 2D points
matches (instead of 2D edge
matches)

B Verification of Pose

— Apply transformation of object
to image and test number of
SIFT point matches within pixel
distance < d,

(Images: David Lowe, UBC)
Toby Breckon Background: 73
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Detecting an Object — Method 2

B Each SIFT feature match
specifies a potential

{position | rotation | scale}

W Use a Hough Transform based
voting method to identify
clusters of feature matches
pointing to consistent

{position | rotation | scale}

B Estimate and verify pose of top
N clusters as per Method 1

(Images: David Lowe, UBC)
Toby Breckon Background: 74



20
Y Durham

University

Detecting Classes of Objects

B Cluster Features in Rrspace L E 2 dChig rvf” :}inh%
@ i ,
— over (lots of) example (training) =
images N

— K-means ClUStering (need to pick k!)

B Cluster “membership” for a given object
example creates a histogram of OO
feature occurrence + b @

B Use histogram of feature occurrence I_ﬂ_u_,

=~ F

&0
as inputs to a machine learning : '/ - ) e
classification algorithm ‘ | Violin

— (Support Vector Machines) Thw

Toby Breckon Background: 75
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“Bag of (Visual) Words” (BoVW / BOW?" "
Recognition

Object/ | Bagof
‘words’

Toby Breckon Background: 76
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A clarification: definition of “BoVW”

Strict definition (a.k.a. “bag of features)
— Independent features

— histogram representation

Toby Breckon Background: 77
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Of all the sensory impressions proceeding to the
brain, the visual experlences are the dominant
ones. Our perceptio round us is
based essentiali ach the

sensory, brain,
visual, perception,
retinal, cerebral cortex,
eye, cell, optical
now kno'y nerve, image
w, Hubel, Wiesel

have been able to demonstrate
about the image falling on the retina u
step-wise analysis in a system of nerve c
stored in columns. In this system each cell
specific function and is responsible for a sp
detail in the pattern of the retinal image.

Uy DIE€CROM

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold increase
on 2004's $32bn. The Commerce Ministry said
the surplus woulgs "cted 30%
jump in expg
rise in impy

China, trade, “lyto
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
foreign, increase,
trade, value

China's
deliber:
surplus
factor. E§l

to trade within a narr®
the yuan to be allowed to trade freely
Beijing has made it clear that it will takd
and tread carefully before allowing the
rise further in value.




learning recognition

feature demgﬁy-?grgf_gf_“_zﬁu
& representation e NAFERE T B

a T HduP U] IWE I
f Il BR™ . ™ =N
FAE
I image representation PLASRLS Eass

dRIIk I8 FETIR '

Object class models , Object class
(and/or) classifiers decision
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BoVW : Stage 1 - Feature detection and vy

representation

<«

. /

Compute _
descriptor Normalize

e.g. SIFT [Lowe’99] patCh

Detect patches
[Harris Feature Points / SIFT]

Local interest operator (Harris)
or
Regular grid (every N pixels in X and Y)

Slide credit: Josef Sivic

Toby Breckon Background: 80
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BoVW : Stage 1 - Feature detection and vy

representation

Over multiple image ..... (100s / 1000s +)

Slide credit; Josef Sivic

Toby Breckon Background: 81
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BoVW : Stage 2 - Codewords dictionary formationiesiy
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Via k-means clustering to find £ clusters of
feature descriptors

(user defines/choose — k)

The centre of each cluster forms the codewords.

The set of codewords is known as the dictionary.

Toby Breckon

128-D SIFT space

v

Slide credit; Josef Sivic
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BoVW : Stage 3 - Encode images as occurrencesgypurham
of codewords (forming histogram of feature Hniversity

occurrenge)
[ ][ ][ ][ ] Codewords
®
o0
° ®
oo o
‘.‘
.0‘ Vector quantization

128-D SIFT space Slide credit: Josef Sivic
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"Durham
Can visualize codewords as image """

patches in examples

EIII bt

Sivic et al. 2005
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BoW : Stage 4 BoVW Image representation University

Histogram of features
assigned to each cluster

A

Frequency of occurrence

\4

FTLONERLS B

Codewords (1 - K)
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BoVW : Complete Architectu re University
(example: thermal people detection)

examples OFF-LINE

(people) (training)

ON-LINE
(real-time)

=

s -ve examples
(not people)
[Multi-dimensional

l descnptors SURF,
SIFT, .
Feature

Extraction

Feature
Extraction

video (“live”) input

Feature
Extraction

Clustering for
Dictionary
Generation

Dictionary

Feature

detected - [+ve |
-ve]

Toby Breckon

Histogram
Generation

Classification

Feature
Histogram
Generation

Classifier

Training

[SVM,

or Random Forest, Bayesian ...

[cluster centres k-
Means
or variant ...]

]
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"Durham

Uses of BoVW representatlon )

* Treat as feature vector for standard classifier
—e.g SVM

* Cluster BoW vectors over image collection
— Discover visual themes (via clustering)

* Hierarchical models
— Decompose scene/object into parts

Toby Breckon Background: 87



